RHEO-DIELECTRIC BEHAVIOR OF UNENTANGLED POLY (BUTADIENE OXIDE) UNDER STEADY SHEAR

Yumi Matsumiya¹, Takeshi Sato¹, Quan Chen² and Hiroshi Watanabe^{1,2}

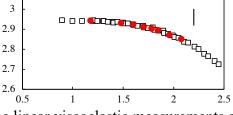
¹ Kyoto University, Kyoto, Japan

² Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China

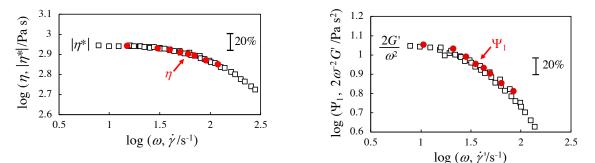
ABSTRACT

A rheo-dielectric test for a type-A unentangled melt, poly(butylene oxide), was performed to measure η , Ψ_1 , and ε_y " in the velocity gradient (y) direction. Analyzing these ε_y ", η , and Ψ_1 data, we found that the spring strength κ increases moderately while the off-diagonal components of the friction coefficient tensor ζ remain negligibly small on an increase of Wi up to 1.2. We also found that the diagonal components ζ_{xx} (with x being the velocity direction) and B_{yy} hardly change while ζ_{yy} decreases moderately. These results, suggesting the onset of the finite extensive nonlinear elasticity and violation of a relationship $B_{yy} \propto \zeta_{yy}$, serve as a starting point for deeper investigation of κ , ζ , and **B**.

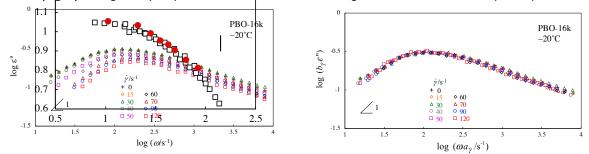
INTRODUCTION


Recently, extensive studies have been made for flow-induced changes in the local properties of polymer chains. In the bead-spring chain model, these changes can be expressed as changes in the spring constant κ , the bead friction ζ , and the mean-square intensity *B* of the Brownian force acting on the bead. An experimental evaluation of the magnitude of flow-induced changes in these parameters is desired. In this regard, we have recently conducted the Rouse analysis of dielectric and diffusion properties measurable with Lab devices under shear.¹ Based on this analysis, we have performed the rheo-dielectric measurement for a typical type-A polymer, poly(butylene oxide) (PBO), in the unentangled melt.²

EXPERIMENTAL


A linear unentangled polybutylene oxide (PBO) ($M_w = 16 \times 10^3$, $M_w/M_n = 1.30$) was used. Linear viscoelasticity and rheo-dielectric measurements were performed on a rheometer ARES-G2 (TA Instruments) using a parallel plate (5 ϕ) and a homemade cone-plate electrode (10 ϕ , 0.025 rad), respectively. In the rheo-dielectric measurements, the cone-plate electrode was connected to a dielectric bridge (ModuLab XM MTS; Solartron Analytical) *via* a Hg reservoir, and dielectric frequency sweep tests were performed in the range of $10^4 \ge f/\text{Hz} \ge 1$ under steady shear flow.

RESULTS AND DISCUSSION


The rheo-dielectric measurements of PBO-16k were performed at -20° C and the resulting steady-state viscosity η , first normal stress difference coefficient Ψ_{1} , and dielectric loss ε_{y} " in the velocity gradient direction are summarized in **Figs. 1 and 2**. For comparison, complex

viscosity $|\eta^*|$ and elastic factor $2G'/\omega^2$ obtained from the linear viscoelastic measurements are also shown in **Fig. 1**.

Figure 1: (left) η of PBO-16k at -20° C against $\dot{\gamma}$ in filled circles. $|\eta^*|$ against ω is shown with open squares.¹(**fight**) Ψ_{\uparrow} against $\dot{\gamma}' = \dot{\gamma}/1.4$ in filled circles. $2G'/\omega^2$ against ω is shown with open squares.

Figure 2: (left) ε " of PBO-16k at -20°C measured under steady shear at the rate $\dot{\gamma}$ as indicated is plotted against ω .(right) Normalized plots of the rheo-dielectric ε " data.

We have solved the equation of motion of the type-A Rouse chain to express its ε " analytically in terms of κ and ζ .¹ (The mean-square intensity of the Brownian force **B** vanishes on the averaging of the first order moments, and is not included in this expression.) The key quantities in that expression are the non-equilibrium parameter *r* defined for κ and ζ :

$$r_{\kappa} \equiv \kappa_{\rm sf} / \kappa_{\rm eq} \tag{1a}$$

$$\zeta_{,ij} \equiv \zeta_{ij,sf} / \zeta_{eq} \tag{1b}$$

Here, the subscripts "sf" and "eq" stand for the quantities under steady flow and at equilibrium, respectively. ζ_{ij} is the *ij* component of the friction coefficient tensor $\zeta(i, j = x)$: velocity direction, *y*: velocity gradient direction, *z*: vorticity direction). If ζ_{yx} is negligibly small, the dielectric mode distribution is not affected by the shear and ε_y " is simply related to ε_{eq} "(ω) as¹

$$\varepsilon_{y}^{"}(\omega) = \frac{1}{r_{\kappa}} \varepsilon_{eq}^{"}(\omega \{ r_{\zeta, yy} / r_{\kappa} \})$$
⁽²⁾

The experimentally observed shear-insensitivity of the dielectric mode distribution (Fig. 2) strongly suggests that our PBO-16k sample had negligibly small ζ_{yx} at $\dot{\gamma}$ examined. Then, the intensity factor $b_{\dot{\gamma}}$, used for the vertical shift in Fig. 2, coincides with the non-equilibrium parameter r_{κ} (Eq. 1a), and the frequency shift factor $a_{\dot{\gamma}}$ is identical to the $r_{\zeta,yy}/r_{\kappa}$ (Eq. 2). These relationships allow us to evaluate $r_{\zeta,yy}$ and r_{κ} . The results are shown in Fig. 3.

As mentioned earlier, dielectric data are independent of **B**. However, the rheological data depend on **B**, so that combination of dielectric and rheological data allows us to obtain the non-equilibrium parameter for **B**:

$$r_{B,ij} \equiv B_{ij,sf} / B_{eq} (i,j = x, y, z)$$
(3)

By solving the Rouse equation of motion, η and Ψ_1 can be expressed analytically in terms of r_{κ} , $r_{\zeta,ij}$, $r_{B,ij}$. When $r_{\zeta,yx} \sim 0$ as in the present experiment, r_{κ} and $r_{\zeta,yy}$ obtained from the dielectric data (**Fig. 2**) and the rheological η/η_0 and $\Psi_1/\Psi_{1,0}$ data give $r_{\zeta,xx}$ and $r_{B,yy}$ as

$$r_{\zeta,xx} = \frac{\left\{\Psi_1/\Psi_{1,0}\right\}}{\left\{\eta/\eta_0\right\}} r_{\kappa}$$
(4)

$$r_{B,yy} = \frac{r_{\kappa}}{2} \left\{ \frac{\eta}{\eta_0} \right\} \left(1 + \frac{r_{\zeta,yy}}{r_{\kappa}} \frac{\left\{ \eta/\eta_0 \right\}}{\left\{ \Psi_1/\Psi_{1,0} \right\}} \right)$$
(5)

The non-equilibrium parameters r_{κ} , $r_{\zeta,yy}$, $r_{\zeta,xx}$, and $r_{B,yy}$ thus evaluated are summarized as a function of Weissenberg number $Wi = \tau_1^{[G]}\dot{\gamma}$ in **Fig. 3**. ($\tau_1^{[G]}$: the longest linear viscoelastic relaxation time). $r_{\zeta,xx}$ and $r_{B,yy}$ remain close to unity, whereas r_{κ} and $r_{\zeta,yy}$ increases and decreases, respectively, on an increase of Wi up to 1.2. This nonlinearity of r_{κ} and $r_{\zeta,yy}$ is just moderate (possibly because Wi is not increased well beyond unity). Nevertheless, the following features are worth noting: the increase of r_{κ} suggests the *onset* of finite extensible nonlinear elasticity, and the difference between $r_{B,yy}$ and $r_{\zeta,yy}$ suggests a violation of the proportionality, $B_{yy} \propto \zeta_{yy}$, naively expected from the fluctuation-dissipation theorem. In addition, for $Wi \leq 1.2$, $\eta/\eta_0 \approx 2/\{r_{\kappa}(1+r_{\zeta,yy})\}, \Psi_1/\Psi_{1,0} \approx 2/\{r_{\kappa}^2(1+r_{\zeta,yy})\}.^2$ Namely, the thinning of η and Ψ_1 is determined by a delicate balance between the increase of r_{κ} and decrease of $r_{\zeta,yy}$. Further rheo-dielectric experiments covering larger Wi are desired for a deeper understanding of these features of η , Ψ_1 and r, and are now being planned with a setup of a CPP shearing fixture/electrode.

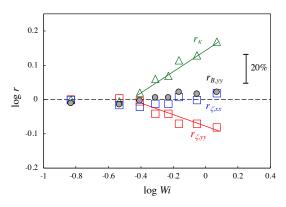


Figure 3: Changes of non-equilibrium parameters r's with the Weissenberg number Wi.

REFERENCES

- 1. Sato, T.; Matsumiya, Y.; Watanabe, H., Rheo-Dielectrics and Diffusion of Type-A Rouse Chain under Fast Shear Flow: Method of Evaluation of Non-Equilibrium Parameters for FENE, Friction-Reduction, and Brownian Force Intensity Variation, *Nihon Reoroji Gakkaishi (J. Soc. Rheol. Jpn.*), **50**, 253-268, 2022. https://doi.org/10.1678/rheology.50.253.
- Matsumiya, Y.;Sato, T.; Chen, Q.; Watanabe, H., Rheo-dielectric Behavior of Unentangled Poly(butylene oxide) under Steady Shear: Non-equilibrium Parameters at the Onset of Nonlinearity, *Nihon Reoroji Gakkaishi (J. Soc. Rheol. Jpn.*), 50, 371-385, 2022. https://doi.org/10.1678/rheology.50.371.