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ABSTRACT

We performed direct numerical simulations (DNSs) of a zero-pressure-gradient turbulent boundary
layer flow of viscoelastic fluids with variations of solution concentration and temperature in order
to investigate the effect of local variation in the relaxation time on the drag reduction. To this end,
we proposed a new constitutive equation model based on the FENE-P model, c-T -FENE-P model,
in which the FENE-P model was coupled with the scalar equations of solution concentration and
temperature. In this study, DNSs for 6 cases of increasing and decreasing relaxation times with
temperature were performed.

INTRODUCTION

As reported in recent reviews,1 numerous DNS studies of wall-bounded turbulent flows of viscoelas-
tic fluids can predict some experimental findings such as the steeper gradient of mean velocity profile
in wall-units and more suppression of turbulence structures with the amount of the drag reduction.
In the minimal channel flow, Xi & Graham2 found that the instantaneous levels of polymer stretch-
ing and drag reduction were anticorrelated in time. Tamano et al.3 also revealed that what occurs
temporally in the minimal channel2 was similar to what occurred spatially in boundary layer flow,
and the streamwise profile of drag reduction ratio shifted downstream, as the Weissenberg number,
i.e. the relaxation time became larger. However, the effect of local variation in relaxation time on the
drag reduction still remains unknown in wall-bounded turbulent flows of viscoelastic fluids, since
the relaxation time is constant in space and time in previous studies based on the FENE-P model.
In this study, the effect of the local relaxation time on the drag reduction in wall-bounded turbulent
flows is investigated by coupling the FENE-P model with equations of solution concentration and
temperature.

NUMERICAL METHOD AND CONDITIONS

The non-dimensional governing equations for the incompressible viscoelastic flow are continuity
and momentum equations:
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where ui is the velocity component, p is pressure, xi is a spatial coordinate, t is time, and Eij is
the viscoelastic stress component. In this paper, x1 (x), x2 (y) and x3 (z) directions are streamwise,
wall-normal and spanwise, respectively. β = ηs/η0 is the ratio of solvent viscosity ηs to zero shear
rate viscosity of solution η0. In the present study, the inflow condition for the boundary layer is
given by the Lund’s method,4 so that the computational domain is divided into the main and driver
parts in which the inflow condition for the main part is obtained. In Eq. 1, the momentum-thickness
Reynolds number Reθ0 is defined as, Reθ0 = ρUeθ0/η0, where Ue is the free-stream velocity, θ0
is the momentum thickness at the inlet plane of the driver part, ρ is density. The non-dimensional
FENE-P constitutive equation for conformation tensor Cij for inhomogeneous polymer solutions is
as follows:4
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The viscoelastic stress component is related to the conformation tensor, Eij = (fCij − δij)/Wi,
where f is the Peterlin function f = L2/(L2 − Tr(Cij)), and L represents the maximum extension
of polymer. The Weissenberg number Wi is defined as, Wi = λUe/θ0, where λ is the relaxation
time.

In Eq. 2, n is the number of density, i.e. the polymer concentration which is described by the
following equation:4

∂n

∂t
+ uj

∂n

∂xj

=
1

Pen
∇2n, (3)

where Pen = ScReθ0 is the Péclet number for concentration. In this study, the Schmidt number
is set at Sc = 1 for the computational limitation. We called this type of FENE-P model4 coupled
with the concentration equation “c-FENE-P model”. In this model, the relaxation time is constant
(λ = λ0), so that Wi is the same as the setting Weissenberg number Wi0(= λ0Ue/θ0).

In this study, moreover, we introduced the equation of the non-dimensional solution temperature
T as follows:
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where PeT = PrReθ0 is the Péclet number for temperature. In this study, the Prandtl number is set
at Pr = 1 for simplicity. Here, it is assumed that the relaxation time λ is the simple function of the
solution temperature, λ(T ) = λ0T

±0.5,±1.0,±2.0, so that the Weissenberg number is rewritten as,

Wi =
λ(T )Ue

θ0
=

λ(T )

λ0

Wi0. (5)

We name this type of constitutive equation model “c-T -FENE-P model.”
The second-order accurate finite difference scheme on a staggered grid is used. The semi-implicit

time marching algorithm is used where the diffusion term in the wall-normal direction is treated
implicitly with the Crank-Nicolson scheme, and the third-order Runge-Kutta scheme is used for all
other terms. The setting momentum-thickness Reynolds and Weissenberg numbers are Reθ0 = 670
and Wi0 = 50, respectively. The viscosity ratio is β = 0.9. The maximum extension of the polymer
L is 100. The size of the computational domain for the present simulations is equal to (Lx×Ly×Lz)
= (300θ0 × 30θ0 × 20πθ0/3) in the streamwise, wall-normal, and spanwise directions, respectively.
The grid size is (Nx × Ny × Nz) = (384 × 64 × 64). The concentration inlet boundary condition
is given by the constant Gaussian profile.4 The inflow temperature is constant (T = Tin), and the
isothermal heated wall boundary condition (Tw = 4Tin) is imposed.



RESULTS

The streamwise variation in the drag reduction ratio DR is shown in Fig. 1. DR(x) is defined as,

DR(x) =
CfNewtonian(x)− CfViscoelastic(x)

CfNewtonian(x)
, (6)

where CfNewtonian(x) and CfViscoelastic(x) are the skin friction coefficients for Newtonian and viscoelas-
tic fluids, which are functions of the streamwise position x and are evaluated at the same x. For
the case of increasing relaxation time with temperature (open symbols), the DR of the c-T -FENE-
P model is smaller than that of the c-FENE-P model (λ = λ0), while it is larger for the case of
decreasing relaxation time with temperature (closed symbols).

0 50 100 150 200 250 300

−40

−20

0

20

40

60

80

100

x/θ0

%
D

R

c−FENE−P (λ = λ0)

λ = λ0T
0.5

λ = λ0T
−0.5

λ = λ0T
1.0

λ = λ0T
−1.0

λ = λ0T
2.0

λ = λ0T
−2.0

c−T−FENE−P 

Figure 1: Streamwise variation in drag reduction ratio

CONCLUSIONS

Direct numerical simulations of the zero-pressure gradient drag-reducing turbulent boundary layer
of viscoelastic fluids were performed using the proposed c-T -FENE-P model. The effect of local
variation in the relaxation time on the drag reduction ratio was discussed.
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