THE EFFECT OF THE SOLVENT DIELECTIC CONSTANT ON THE CONFORMATION AND DYNAMICS OF POLYELECTROLYTES IN SOLUTION

Atsushi Matsumoto¹, Hiroto Osada², Ryosuke Ukai², Shinji Sugihara¹, and Yasushi Maeda¹

¹Graduate School of Engineering, University of Fukui ²School of Engineering, University of Fukui 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan

ABSTRACT

In this study, we investigated the effect of the solvent dielectric constant ε_r on the counterion condensation for an imidazolium-based polyelectrolyte, poly(1-butyl-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide) (PC4-TFSI), by measuring the shear viscosity of the PC4-TFSI in a series of non-ionic good solvents having dielectric constants ranging from 7.9 for tetrahydrofuran to 178 for N-methylformamide. We found that for a given molar concentration $c_{\rm p}$ of the PC₄-TFSI monomers, the specific viscosity $\eta_{\rm sp}$ decreased significantly with decreasing ε_r . Moreover, the dependence of η_{sp} on c_p in solvents at high ε_r followed the scaling law of η_{sp} for salt-free polyelectrolytes in good solvents, but its scaling relationship gradually shifted to the scaling law of η_{sp} for electrically neutral polymers in good solvents as ε_r was decreased. Thus, we found that PC₄-TFSI could behave as both polyelectrolyte and neutral polymer chains by simply changing the solvent dielectric constant. We further analyzed the viscosity data by estimating the overlap monomer concentration c_p^* as a monomer concentration at which $\eta_{sp} = 1$. The value of c_p^* decreased with increasing ε_r with a power of -3 for $\varepsilon_r < 1$ 70, and asymptotically approached a constant value at higher ε_r . Since the overlap polymer concentration is related to the chain size, i.e., $c_p^* \propto 1/R^3$, the observed result indicates that the chain size increases with increasing ε_r due to the increase in the charge fraction on the PC₄-TFSI caused by the counterion condensation. By applying the Dobrynin blob model for c_p^* of salt-free polyelectrolytes in good solvents¹, we found that the charge fraction f was scaled as $f \propto \varepsilon_r^{7/4}$. The obtained scaling exponent was larger than the value predicted by the classical Manning counterion condensation model², i.e., $f \propto \varepsilon_r^1$. Our results provide, for the first time, a valid experimental reference for the study of the counterion condensation process of polyelectrolytes with respect to the varying ε_r .

- Dobrynin, A. V.; Colby, R. H.; Rubinstein, M. Scaling Theory of Polyelectrolyte Solutions. *Macromolecules*, 28, 1859–1871., 1995. https://doi.org/10.1021/ma00110a021.
- Manning, G. S. Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties. J. Chem. Phys., 51, 924, 1969. https://doi.org/10.1063/1.1672157.