
REVERSAL MOTION OF E-COLI BACTERIA IN NEMATIC LIQUID CRYSTALS

M. Goral^{1,2}, E. Clement¹, T. Lopez-Leon² and A. Lindner¹

¹Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), ESPCI-PSL Paris, France ² Laboratoire Gulliver, ESPCI-PSL Paris, France

ABSTRACT

In many situations bacteria move in complex environments associated with non-Newtonian rheology. In this context, we seek to understand how these active fluids adapt and deal with geometrical frustration induced by the environment. Interesting spatio-temporal patterns have recently been observed in nematic liquid crystals, where the motion of bacteria is directed by the orientational molecular order of the liquid crystal or director field ¹. In this work, we study the swimming reorientation of a single bacterium, *E. coli*, constrained to move along the director field of a lyotropic chromonic liquid crystal (LCLC) that is confined to a planar cell. In such an environment, the spontaneous run and tumble motion of the bacterium gets frustrated: the elasticity of the liquid crystal prevents flagella from unbundling. Interestingly, in order to change direction, bacteria execute a reversal motion along the director field, shown in the **Fig. 1**, driven by the relocation of a single flagellum to the other side of the bacterial body, coined as a frustrated tumble. We present a detailed experimental characterization of this phenomenon, exploiting exceptional spatial and temporal resolution of bacteria and flagella dynamics during swimming, obtained using a two color Lagrangian tracking technique. We suggest a possible mechanism behind the frustrated run and tumble motion, accounting for these observations.

Figure 1: Snapshots of a bacterium swimming and changing direction in the liquid crystal. The nematic director is along the vertical direction, as well as the bacterium alignment.

ACKNOWLEDGEMENTS

This work was funded by the Agence Nationale de la Recherche (ANR) grant ANR-13-JS08-0006-01 and the European Research Council (ERC) Consolidator Grant 'PaDyFlow', Grant Agreement no. 682367.

REFERENCES

1. Zhou S., Sokolov A., Lavrentovich O.D., Aranson I.S. Living liquid crystals, *Proc. Natl. Acad. Sci.*, **111** (4), 1265-1270, 2014.