Rheology of active colloids: motility-induced shearthickening

Hartmut Löwen¹, A. Gülce Bayram², Fabian J. Schwarzendahl¹ and Luca Biancofiore²

¹Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany ²Bilkent University, Ankara, Turkey

ABSTRACT

Phase transitions and collective dynamics of active colloidal suspensions are fascinating topics in soft matter physics¹, particularly for out-of-equilibrium systems, which can lead to rich rheological behaviour in presence of steady shear flow. Here the role of self-propulsion in the rheological response of a dense colloidal suspension is investigated by using particle-resolved simulations. Increasing the self-propulsion of the colloids induces a transition from a shearthinning to a shear-thickening behaviour, which we attribute to clustering in the suspensions induced by motility, a general phenomenon which occurs close to motility-induced phase separation (MIPS)². This novel behaviour of motility-induced shear thickening (MIST) can be used to tailor the rheological response of colloidal suspensions.

ACKNOWLEDGEMENTS

We thank Jürgen Horbach for helpful discussions. The work of A.G.B. was supported within the EU MSCA-ITN ActiveMatter (Proposal No. 812780).

REFERENCES

- 1. Bechinger, C.; di Leonardo, R.; Löwen, H.; Reichhardt, C.; Volpe, G.; Volpe, G.; Active particles in complex and crowded environments, *Reviews of Modern Physics* **88**, 045006 (1-50) (2016).
- Buttinoni, I; Bialké, J.; Kümmel, F.; Löwen, H.; Bechinger, C.; Speck, T.; Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles, *Physical Review Letters* 110, 238301 (1-5) (2013).