Tools for BSM@nu – What do we need for experiments?

NuTools for BSM@v Workshop PittPACC University of Pittsburg **Dec. 14 – 16, 2022**

Jaehoon <u>Yu</u> University of Texas at Arlington

Outline

- Introduction
- BSM Opportunities at v exp, why & how?
- Conditions for BSM
- A few example cases on DUNE
- Considerations for v exp
- Outcomes wish list
- Conclusions

Introduction

- High intensity proton beams and large active mass FD with precision 3D imaging capability, along with the powerful ND complex make it possible to contemplate BSM physics traditionally inaccessible to v experiments
- Most next gen $\nu\text{-experiments}$ design solely focused on the B&B ν oscillation parameter measurements, CPV and p decays
- Some detectors have capabilities to fit BSM measurements
 - The strengths of LArTPC offer breaths & depths of BSM physics → resulted in BSM as a core physics program of DUNE
 - SBN experiments are to be fully operational with high flux proton beams soon!!
- Must take full advantage of these facilities

Anatomy of DUNE

Dec. 14, 2022

BSM@nu Experiments - J. Yu

DUNE Near Detector Complex

- Phase I ND consists of [LAr TPC (M_A=150t, V_A=105m³) TMS, making up the PRISM – SAND
- Phase II Full Suite ND consists of [LArTPC Magnetized (0.5T) large volume HPGAr TPC (10atm - M_A=1t, V_A=108m³) w/ ECAL, making up the PRISM - SAND

Dec. 14, 2022

Snowmass 2021 NF Science Driver

- How are the neutrino masses ordered?
- What are the values of the neutrino masses?
- What is the origin of the neutrino masses?
- Are neutrinos their own anti-particles?
- Do neutrinos and antineutrinos oscillate differently?
- Is the three-flavor picture of neutrino oscillation complete?
- Do neutrinos interact in novel ways, or with new and sofar undiscovered particles?
- Using neutrinos as a window on the universe, what will we see?

Dec. 14, 2022

BSM@v Signature Categories & Needs

- Direct Observation Signatures from the beams leverage
 - High beam flux
 - Large mass, high density for scattering signatures
 - Large volume, low density for decay signatures
 - Capable near detector complex
 - Low threshold energy
 - Low background from cosmic sources
- Inferred Observation Signatures from both beam and cosmogenic sources
 - Leverage oscillatory behaviors
 - Large target mass FD for interactions
- What do we need to know?
 - Signal flux and realistic behaviors in the detector

- Neutrino flux and their interactions in the detector as bck Dec. 14, 2022 BSM@nu Experiments - J. Yu

BSM Physics Topics at v exp

- High beam power, large detector mass + highly capable, precision near and far detectors with low E thresholds make BSM physics viable
 - Signal to background ratio grows by the sqrt of the beam power
 - Near Detector Searches → Take advantage of high beam power
 - Dark sector particles beam originating : Low mass Dark Matter (LDM), Pseudo-scalar/ scalar Axion-like Particles (ALP), Light Mediators (a,φ,V), dark photons, erc
 - Heavy Neutral Leptons (HNL)
 - Milli-charge Particles (mCP)
 - Neutrino Trident ...

(4) $e^+e^- \rightarrow V, \phi, a$ Resonance production, Compton productions, DY, *Bremsstrahlung Many more*

BSM@nu Experiments - J. Yu

Dec. 14, 2022

9

New Physics @ the Detector

Look for both decay products and scattering in ND for beam originating BSM signatures

BSM@nu Experiments - J. Yu

Dec. 14, 2022

Selected BSM Topics @ DUNE

- High beam power, large detector mass + highly capable, precision near and far detectors with low E threshold make <u>DUNE a BSM machine</u>
 - Recall the signal to background ratio grows by the sqrt of the beam power
 - - Axion-like Particles (ALP)
 - Low mass Dark Matter (LDM)
 - Heavy Neutral Leptons (HNL)
 - Dark Photon
 - Neutrino Trident
 - Milli-charge Particles (mCP)
 - And many many more..
 - Far Detector Searches → Take advantage of ND, large V_A FD & long baseline
 - Sterile neutrino searches
 - Non-standard Interactions, Non-Unitarity, CPT violation
 - Large Extra Dimensions (LED)
 - Boosted Dark Matter (BDM) & Inelastic Boosted Dark Matter (iBDM)
 - And many many more...
- Strong collaboration of theorists and experimentalists essential
- Some of these topics covered in EPJ C.81, 322 (2021) Dec. 14, 2022 BSM@nu Experiments - J. Yu

ALP Searches @ DUNE ND

- Axion-like particles (ALP) can be produced via the Primakoff process in high intensity proton beams in the neutrino target
- Detection through a scattering with $e/N + \gamma$ or decays of the ALP to two γ
- Other axion coupling, e.g. g_{ae} is accessible, as well
- DUNE ND Phase II enables complete closure of the Cosmic Triangle!!
 - Brdar et al., <u>PRL126,</u>
 <u>201801</u> (2021)

Light Dark Matter (LDM) Search

- LDM's produced in the target via coupling of dark photon with a SM γ from brem, scalar meson decays or direct DY
- Identify the signal using e⁻ or nucleon recoil by LDM via dark photon kinetic coupling with SM γ
 - Batell et al. [0906.5614],
 - deNiverville et al. [1205.3499]
 - Coloma et al. [1512.03852]
- Ability to identify e⁻ recoil w/ low E threshold key
 - Expands the LDM mass coverage
 - Recoil E_e peaks at low E for low LDM mass
 - Significant background from ν_{μ} scattering off e-

LDM Search Sensitivity

- Search benefits from DUNE PRISM for neutral meson induced LDM
 - Leverage more rapid reduction of v_{μ} flux than the signal off-axis (De Romeri *et al.*, <u>PRD100</u>, 095010, 2019)

Dark Photon Searches

- New U(1) could kinetically mix with a SM γ from scalar meson decays or direct DY
- If these dark photons can live sufficiently long to reach the DUNE ND \rightarrow Look for their decays to a charged lepton pair
 - $A' \rightarrow e^+e^-, \mu^+\mu^-$
 - Many more final states..
 - Cleaner signature
 - Low E thre. for higher ε_{A}
 - Low energy v-N interactions essential for backgrounds

Dec. 14, 2022

HNL Searches @ DUNE ND

- High intensity proton beams produce HNL from the decays of heavy mesons → complementary to colliders
- HNL decays to charged leptons and lighter mesons in the DUNE ND complex → a charge lepton + a meson, 2 charged leptons + v
 - Coloma et al., (2007.03701)
- Clear demonstration of complementarity to the LHC

BDM Searches @ DUNE FD

- DM's captured in the Sun could be boosted in it and enter the detector (BDM)
- Potential of searching for BDM in its elastic scattering in detector via nucleon or e recoil
- Large volume LAr TPC FDs' precision tracking and vertexing w/ low E threshold capability enables detection of BDM

0.0

 $\cos(\theta)$

Atmospheric ν

 $\gamma = 1.1$ $\gamma = 1.5$

 $\gamma = 10$

0.5

Backgrounds from n-N interaction challenging

 $m_{\gamma} = 10 \text{ GeV}$

Dec. 14, 2022

-0.5

 10^{4}

 10^{3}

 10^2

 10^1

 10^{0}

Number of Events

BDM Sensitivity Reach

iBDM Searches @ **DUNE FD**

- DM annihilation in the galactic center produces boosted dark matter (BDM)
- Potential of searching for relativistic BDM in its inelastic scattering in the detector
 Distinctive signature of 3 leptons + missing energy final states helps overcome backgrounds

ALP g_{ay} Sensitivity Coverage Potential

Dec. 14, 2022

Signature & Backgrounds of BSM@v

BSM signal final states include charged leptons (e+/-, μ +/-), photons and nucleus (nucleon) recoil $\rightarrow \nu$ -N interactions the primary background

BSM Process	Selected signatures	Background	
ALP	Scattering: γ+e, γ+N (n) Decay in flight : γγ	$ u$ coherent, NC w/ π^0 , ν_e CC w/ π^0 , etc	
LDM	$\chi e^{-} \rightarrow \chi e^{-}, \chi N \rightarrow \chi' N \rightarrow \chi e^{-} e^{-} N, \chi N \rightarrow \chi' N \rightarrow \chi \gamma N,$	NC w/ $\pi^{0,} \nu_{e}$ CC, QE, RES	
mCP	Multiple e- scatterings	$ m v_e~CC$ w/ π^0	
Dark Photon	A→e⁻e⁺, μ⁻μ⁺, many more	v CC + mis-ID π , Accidental overlap of CC	
HNL	$\begin{split} N &\rightarrow \nu e^- e^+, \nu \mu^- \mu^+, \nu \gamma, \nu e \mu, \nu \pi^0, \\ e \pi, \mu \pi \end{split}$	v CC + mis-ID π , v _e CC w/ π^0	
v trident	ν→νe ⁻ e ⁺ , νμ ⁻ μ ⁺ , νeμ	$\nu_{\mu} N \rightarrow \nu_{\mu} \pi N \Box (\nu CC)$	
BDM/ iBDM	χN→e⁺e⁻e⁻N, χN→e⁻N, χN→nN	ν coherent, NC w/ π^{0},ν_{e} CC	
Many more	Many many more		

Low E v Interactions

- QE & RES dominates v-N interactions in E_v range where the two oscillation maxima reside, for the case of DUNE → critical to understanding v backgrounds
- Large uncertainties for v-N x-sec calculations
- DUNE can utilize its
 powerful ND complex to
 measure x-sec in-situ
- Collaboration between
 NP and HEP
 communities essential

Tails, tails, tails, and tails

- BSM effects extremely rare and are in the tail ends of the SM processes → can easily be masked by SM fluctuations
- Many different theoretical predictions and generators for v−N have been in existence and continue improving (and new ones appearing – ACHILLES) → but they still have sizeable uncertainties within each and between themselves
- Generators begin to incorporate BSM processes but could take a long time to implement due to insufficient resources → need further strengthening the efforts

Dec. 14, 2022

Very different challenges and strategies

- Detector technology
 - LArTPC, Water Cerenkov, Emulsions, etc
- Detector locations
 - Underground versus surface
- Detector dimension parameters
 - Target density, mass, geometric size, etc
- Performance parameters
 - Position resolutions, angular resolutions, vertex resolutions, energy resolutions, energy thresholds, etc
- These determine various experimental strategies

 Triggering
 - Computing, including data storage and reco & sim

Considerations for BSM at ND

- Dominant physics would be beam originating BSM
- Large amount of beam ν backgrounds
- Different cosmic background considerations
 - Underground: cosmic background less of a concern
 - Beam neutrino background interaction in the rocks give backgrounds
 - Shallow depth detectors suffer from cosmic ray bck
 - Could focus on beam originating signatures, reducing the impact

– Solar & atm ν interactions still contribute as bck but would be negligible

Dec. 14, 2022

Considerations for BSM at FD

- Dominant physics would be oscillatory behavior based BSM & non-beam related BSM, such as cosmogenic DSPs
- Very little beam ν backgrounds other than those from $\nu\text{-}$ rock interactions
- Deep underground location helps to keep most cosmic ray backgrounds away
 - Solar and atm $\boldsymbol{\nu}$ interactions still contribute as bck
- Some terrestrial backgrounds which can be rejected, except for neutrons and backgrounds from radioactive impurities
- Need to be able to trigger on the signal by itself

Critical Capabilities for BSM Signatures

- Identification of low E electron and nucleon recoil
 Iow E threshold
- Ability to resolve two EM particles → good angular resolution
- Ability to identify and correlate a low E electron or nucleon recoil with a vertex of an EM shower pair
 High position and vertex resolution
- Increase the number of interactions → Higher target mass

Considerations for BSM @ v-exp

- Need to perform detailed studies to provide information for improvements and their impacts to the BSM physics such as
 - Energy thresholds of 10 MeV , 1MeV, 100keV & 10keV
 - Position resolution of 1mm, 0.1mm, 0.01mm (can we do this leveraging the multiple pixel energy deposit pattern?)
 - Angular resolution of 1degree, 0.5 degrees, 0.1 degrees
 - Energy/ dE/dx resolution
 - Vertex resolution
 - Active mass of 1*LAr (10kt), 3*LAr and 5*LAr- the cavern dimension is fixed → increasing the mass means that the detector will have to use denser materials than the first two detectors → e.g. multiple layers of thin plates of W sandwiched w/ Lar
 - Leverage directional information of the sources → New readout chips, such as QPiX or LArPix help in event-by-event bases?

General BSM@v Search Strategy?

- Continue developing phenomenology and expanding the potential kinematic ranges to search BSM physics
 - Can we explore everything the EF and CF search in the phase space that are yet to be covered?
 - Can we do SUSY particle searches? Are there phase space that can be complimented by fixed target experiments?
- Integrate and reflect the new signatures into the tools and allow more realistic studies in experiments
 - Need strong final supports to increase the resources adequately for a timely experimental reflections
- Test it at the experiments through measurements
- Feedback to the theory community

Upcoming LArTPC $\nu\text{-exp}$

- In the next few years in LArTPC?
 - ProtoDUNE HD and VD : fall 2023 through end of 2024
 - ~300t and ~200t, respectively \rightarrow ~ 500 t total
 - SBND: Detector completion expected 2023 → Start taking data in 2024 → V_A~ 112t → Focus on beam originating BSM
 - ICARUS: Has been taking data, V_A~470t, can see both BNB and NuMI beams (6° off-axis) → Can do oscillatory behavior and cosmogenic BSM searches + beam originating BSM
 - DUNE FD : Construction completed by 2029 2030, Two FD's of 10kt each → Oscillatory behavior and cosmogenic BSM
 - DUNE ND: Construction completed by 2030 2031, V_A~ 150t
 ➔ Focus on beam originating BSM

Dec. 14, 2022

BSM@nu Experiments - J. Yu

Upcoming LArTPC v-exp

Exp	Depth	VA	d_tgt	Main bck
ProtoDUNEs	Surface	~500t total	NA	Cosmic ray
SBND	Surface	~112t	100m	Beam v + Cosmic ray
ICARUS	Surface w/ a 3m concrete overburden	~470t	600m	Beam v + reduced Cosmic ray
DUNE LArND	~100m underground	~150t	~540m	Beam v
DUNE FD	1500m underground	10kt + 10kt	1.3x10 ⁶ m	Terrestrial + Impurities

Experimental Considerations

- - Backgrounds affect the total acceptable rates
 - For cosmogenic signatures, the data size could be large → lowering the rates critical
- Reconstruction algorithm development
- Analysis strategy for strengthening the signature while suppressing backgrounds
- Ensuring the signal over data tuning for oscillation analyses
- Systematic uncertainty handling
- Model independent result presentations

What is needed of tools?

- Rapid phase space scanning capabilities
- Ability to feed the output of a new physics calculations into the detailed detector simulation w/ greatly reduced efforts
- Ability to rapidly double-check the accuracy
 - Tools must be able to reproduce the SM physics and link it with the BSM
- Rapid data analysis and feedback chain
 More on the experiments' responsibilities
- Ability to vary experiment-relevant quantities and generate realistic simulated events fast!!

Outcomes wish list – 1

- An overarching strategy to support BSM@v activities in a timely and sustainable manner
- A good plan with a clear timeline and milestones to accomplish the established strategy
 - − To test and improve the accuracy of the tools → minimize systematic uncertainties on tools
 - To improve performance of the tools, e.g. speed
 - Strategy for theorists and experimentalists to work together for physics from day 1
 - To ensure BSM signatures don't get washed off
 - To ensure sufficient funding supports for tools development

Outcomes wish list – 2

- Plan for using ProtoDUNEs as a testing ground for developing tools and extracting physics
 - ProtoDUNE detectors have a capability trigger on cosmogenic BSM signatures
- Apply the tools and algorithms to SBND for 8GeV beam originating BSM and ICARUS for 120GeV off-axis BSM + cosmogenic searches
- Implement to DUNE and improve for day 1 physics
- Propose a new experiment to strengthen the BSM in fixed target experiments or in a muon collider

Conclusions

- v experiments have excellent and complimentary BSM capabilities
 - LArTPC detectors (SBN and DUNE) in particular provide the precision and low E thresholds necessary for BSM
- SBN experiments and ProtoDUNEs provide early opportunities to explore BSM@v before DUNE and HK
- DUNE Phase I detector suite already pushes the boundary of BSM in the phase space out of EF & CF but need good tools
- Future detectors like DUNE's MsoO present a great opportunity to make it a even more powerful BSM discovery machine
 Need to input physics requirements to detector designs NOW
- Tools are essential for timely realistic studies and capturing the signal
 Should be thoroughly tested in ProtoDUNE & SBN

Additional slides

At the CERN v-N Interactions workshop..

Discussion Points – I

- Signature handling
 - Need simulation tools for signal generations and to perform more realistic studies of the signal
 - Essential for capturing the signal events
- Realistic background estimates and mitigation
 - \Box ν are the primary backgrounds, what does cosmic ray do to DUNE ND BSM physics?
 - Can we cut on π^0 mass region? What is the impact of such cut?
 - What can we do to help reducing the $\nu\text{-N}$ interaction modeling in a timely fashion? When is this become "timely"?
 - Are there anything we can do to mitigate background from the beam?

Discussion Points – II

- Systematic uncertainties
 - What are the sources of the biggest systematic uncertainties and how do we reduce them? → e.g. v flux uncertainty directly impacts the sensitivity
- Detectors and triggers
 - What is the BSM trigger in next gen exp and beyond?
 - Beam based signatures and cosmogenic signatures will require different triggers and background rate handling
 - What capabilities should be incorporated to further enhance BSM opportunities and discovery potential?
- What needs to be done to keep the interests and engagement and testing the whole analysis chain?