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The MiniBooNE Anomaly
Two main features of the excess:

1.  Excess in the target-mode runs, no 
observed excess in the dump-mode run

2.  Excess shows distinct angular and energy 
spectra

● MiniBooNE, 2021 [2006.16883]
● MiniBooNE, 2019 [1807.06137]
● MiniBooNE, 2018 [1805.12028]
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How can we explain this anomaly with a dark 
sector?

Correlates dark boson flux 
to target-mode excess Massive particle in t-channel accounts 

for observed off-forward cosine 
distribution

We explored these scenarios here:    Phys.Rev.Lett. 129 (2022) 11, 111803  
arXiv:110.11944                               Dutta, Kim, Thornton, Thompson, Van de Water

(1): Dark boson 
photoconversion

(2): X → χχ into DM 
upscattering

Examples:

./Phys.Rev.Lett.%20129%20(2022)%2011,%20111803
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Accomodating the MiniBooNE Observation
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MiniBooNE: Charged Meson Fluxes
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Sanford-Wang Parameterization:

● Ordinarily, we would simulate the Be target meson flux with GEANT4
● However, simulation of the focusing horns is not easy!
● Therefore, one can take a parameterized approach:

Apply cuts to the angle and momentum as a 
heuristic for the horn effect

PhysRevD 79.072002
See also: 
0609129
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Validation of the parameterized approach:
Check against the MiniBooNE-reported neutrino fluxes

Gives o(1) agreement to SW 

(but requires some tweaking of the 
cut window)

Kaon fluxes (using Feynman-scaling 
parameterization) agree less-so 
(KDAR not incorporated)
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Next Option: Roll up our sleeves

1. Simulate Charged pion fluxes with GEANT4 (without horn 
system)

2. Transport the charged pions through the horn system by 
solving

3. MC 3-body decay the pions to generate dark sector fluxes
Runge-Kutta 
Test

See Thesis, Schmitz



  8

Note: Event Generator Schema

1. Draw angles on a 2-sphere in the rest 
frame of the parent meson:

2. Integrate over Dalitz variable
For a given ALP energy.

3. Boost to the laboratory frame.

4. Weights given by             x Jacobian

Dalitz Variables for 3-body Final State:

Code available: 
https://github.com/athompson-tamu/alplib

See Byckling, Kajantie: Particle Kinematics

https://github.com/athompson-tamu/alplib
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Detection Channel: Primakoff-like 
Photoconversion

● Dimension-5 coupling
● May come from, e.g. extra U(1)T3R

● The mediator mass in the t-channel 
gives us a dial to control the 
momentum transfer, and therefore the 
“off-forward-ness” of the cosine 
spectrum at MiniBooNE

● 𝛄 and electrons both show up as similar 
cherenkov rings

~
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Radiative Meson Decays:
Standard Model

= -(    )

Gauge invariance:

In the “chiral” ml → 0 limit, recovering the helicity suppression

+
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Radiative Meson Decays:
General Structure for a Massive Vector

● L is total lepton momentum
● k is the massive vector momentum

Covariant decomposition:

(a)Leptonic terms: lepton couplings
(b)“Internal Brem”: quark couplings
(c)Contact terms: gauge invariance
(d)Structure dependent terms: vector 

meson interactions

(d)
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Radiative Meson Decays:
General Structure for a Massive Vector

● L is total lepton momentum
● k is the massive vector momentum

● For massless photons, the Ward identity applies:
● For massive vectors, it doesn’t need to except in 

gauge invariant cases (e.g. Stückelberg fields) – 
to be conservative, we admit it:

(Ward Identity)

Covariant decomposition:
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Recover IB2 Term

Traditional contact
term
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Dark Sector Chiral Perturbation Theory: 
What is the larger picture?

Quark couplings → 
We generically expect 
couplings to both neutral and 
charged mesons!
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Probing the Meson-portal Dark Sector at 
Stopped-Pion Facilities

p Beam, ~1 GeV

Fixed beam
Target

detector

● Beam targets with meson focusing: charged pions dominate the signal
● Stopped-pion beam target: neutral and charged pion equity
● If the dark sector enters the chiPT, we should test both neutral and 

charged meson couplings! → complementarity between stopped pion and 
high energy beam dump facilities
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Testing this explanation at CCM
(Coherent CAPTAIN-Mills)
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If we have one, 
we have the other

CCM120 Engineering run data
Paper forthcoming

● 800 MeV p beam on W target at Lujan (LANL)
● 10t LAr liquid scintillator
● ~20m baseline
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SBND

● Expected 6.6E+20 POT from BNB target mode
● 110 m baseline
● 112t fiducial mass LAr TPC;           final states can be distinguished
● Short baseline, large active mass → great potential to check the 

MiniBooNE anomaly and charged meson-based explanations
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SBND

PRELIMINARY

● Probing the single-mediator scenario: SBND as a complimentary check to stopped-pion 
facilities

● The charged pion and neutral pion contributions to the excess can both be constrained
● Ability to distinguish between different BSM final states in TPC
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● The charged pion and neutral pion contributions to the excess can both be constrained
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Outlook
● Significant hints that if the MB anomaly is explained by 

BSM, it should be correlated to the charged mesons

● DM production in 3-body decays are also interesting in their 
own right, studied now in a flurry of new works

● If there is a meson portal to dark sector states, we could 
anticipate quark couplings → leads to chiPT picture, neutral 
+ charged meson pheno

● This opens the door to look for these production modes at 
neutrino facilities! CCM, BNB, NuMI...

● More work to be done: modeling of the focusing horns, 
mapping out the chiPT picture, GEANT4 flux validation…
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Backup deck
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Note: 2-to-2 scattering Monte Carlo

Theorist Input, 
FeynCalc etc.
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VIB2, π0 Mediator, mX = 5 MeV

SIB1(µ), mφ = 5 MeV, mX = 100 MeV

PIB1(e) mφ = 5 MeV, mX = 100 MeV

π0 → γX (mX = 5 MeV)

π0 → γX (mX = 100 MeV)

Testing this explanation at CCM
(Coherent CAPTAIN-Mills)

● 800 MeV p beam on W target at Lujan (LANL)
● 10t LAr liquid scintillator
● ~20m baseline

● We get both charged and neutral 
pi-DAR components

● Decay models (IB1, IB2, IB3, 
etc.) give control over the spectra

● Neutral pions provide a higher 
energy component



  25

PIENU Constraints on rare pion decays

2102.07381, PIENU Collaboration
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MiniBooNE: Neutral Meson Fluxes
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See Wooyoung’s talk for more!
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ALPlib: Simulation Pipeline

simulate()

 Flux Weighted 
MC in the target

propagate()

Transport to 
detector

decay()

Compute Decay 
Weights from 

decay probability

scatter()

Compute Scatter 
Weights: 2→N MC 

scattering 

GEANT4 Input:
4-vectors
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