The MiniBooNE Anomaly and Dark Sectors

Adrian Thompson Texas A&M University

PITT-PACC Workshop: \mathcal{V} Tools for BSM at Neutrino Beam Facilities December 15, 2022

The MiniBooNE Anomaly

- MiniBooNE, 2021 [2006.16883]
- MiniBooNE, 2019 [1807.06137]

- Two main features of the excess:
- 1. Excess in the target-mode runs, no observed excess in the dump-mode run
- 2. Excess shows distinct angular and energy spectra

• MiniBooNE, 2018 [1805.12028]

		Excess	РОТ	Charged Mesons Focused?
Target Mode	Neutrino Mode	560.6 ± 119.6	$1.875E{+}21$	π^+, K^+
	Anti-neutrino Mode	77.4±28.5	$1.127\mathrm{E}{+21}$	π^-, K^-
Dump Mode		None	$1.86\mathrm{E}{+20}$	Isotropic

How can we explain this anomaly with a dark sector? (1): Dark boson

(2): $X \rightarrow \chi \chi$ into DM photoconversion upscattering X V_1 V_2^* Ν Ν Beam Target Production **Examples:** $\mathcal{L}_S \supset g_\mu \phi \bar{\mu} \mu + g_n Z'_\alpha \bar{u} \gamma^\alpha u + \frac{\lambda}{4} \phi F'_{\mu\nu} F^{\mu\nu} + \text{h.c.},$ $\mathcal{L}_P \supset i g_\mu a ar \mu \gamma^5 \mu + g_n Z'_lpha ar u \gamma^lpha u + rac{\lambda}{4} a F'_{\mu
u} ilde F^{\mu
u} + ext{h.c.}$ $\mathcal{L}_V \supset e(\epsilon_1 V_{1,\mu} + \epsilon_2 V_{2,\mu}) J^{\mu}_{\rm EM}$ $+(g_1V_{1,\mu}+g_2V_{2,\mu})J^{\mu}_D+(g'_1V_{1,\mu}+g'_2V_{2,\mu})J^{\prime\mu}_D$ **Correlates dark boson flux** Massive particle in *t*-channel accounts to target-mode excess for observed off-forward cosine

We explored these scenarios here: arXiv:110.11944

distribution

Phys. Rev. Lett. 129 (2022) 11, 111803 Dutta, Kim, Thornton, Thompson, Van de Water

Accomodating the MiniBooNE Observation

MiniBooNE: Charged Meson Fluxes

- Ordinarily, we would simulate the Be target meson flux with GEANT4
- However, simulation of the focusing horns is not easy!
- Therefore, one can take a parameterized approach:

Apply cuts to the angle and momentum as a heuristic for the horn effect

See also:

0609129

PhysRevD 79.072002

Validation of the parameterized approach: Check against the MiniBooNE-reported neutrino fluxes

- Monte carlo the π^+ , π^- fluxes with SW parameterization
- Apply a simple 2-body decay of the $\pi \to \nu \mu$ along its flight path
- Propagate neutrinos to the MiniBooNE detector and check their energy spectra against the fluxes reported by the literature

Gives o(1) agreement to SW

(but requires some tweaking of the cut window)

Kaon fluxes (using Feynman-scaling parameterization) agree less-so (KDAR not incorporated)

Next Option: Roll up our sleeves

- 1. Simulate Charged pion fluxes with GEANT4 (without horn system)
- 2. Transport the charged pions through the horn system by solving

$$\frac{dp^{\alpha}}{d\tau} = qF^{\alpha\beta}u_{\beta}.$$

3. MC 3-body decay the pions to generate dark sector fluxes

Note: Event Generator Schema _{a(}

See Byckling, Kajantie: Particle Kinematics

Dalitz Variables for 3-body Final State:

$$\begin{split} m_{12}^2 &= (p_1 + p_2)^2 = (P - p_3)^2 = M^2 - 2ME_a + m_a^2 \\ m_{23}^2 &= (p_2 + p_3)^2 = (P - p_1)^2 = M^2 - 2ME_\ell + m_\ell^2 \\ m_{13}^2 &= (p_1 + p_3)^2 = (P - p_2)^2 = M^2 - 2ME_\nu \\ m_{13}^2 &= M^2 + m_\ell^2 + m_a^2 - m_{12}^2 - m_{23}^2. \end{split}$$

$$\frac{d\Gamma}{dE_a} = \int_{(m_{23}^2)_{min}}^{(m_{23}^2)_{max}} \frac{1}{(2\pi)^3 16M^2} \left\langle |M|^2 \right\rangle dm_{23}^2.$$

1. Draw angles on a 2-sphere in the rest frame of the parent meson:

 $u \sim U(0,1), \theta \sim \arccos(1-2u)$ $\phi \sim U(0,2\pi)$

2. Integrate over Dalitz variable m_{23}^2 For a given ALP energy.

3. Boost to the laboratory frame.

4. Weights given by $\frac{1}{\Gamma} \frac{d\Gamma}{dE_a^*}$ x Jacobian

the end
$$a(p_3)$$
 the end $\nu(p_2)$ the end $\ell(p_1)$

$$(m_{23}^2)_{min}^{max} = (E_2^* + E_3^*)^2 - \left(E_2^* \mp \sqrt{E_3^{*2} - m_a^2}\right)$$

$$E_2^* = \frac{m_{12}^2 - m_{\ell}^2}{2m_{12}}$$
$$E_3^* = \frac{M^2 - m_{12}^2 - m_a^2}{2m_{12}}$$

$$m_a < E_a < \frac{M^2 + m_a^2 - m_\ell^2}{2M}.$$

Code available: https://github.com/athompson-tamu/alplib

Detection Channel: Primakoff-like Photoconversion (scalar-vector)

 $\begin{array}{ll} (\text{scalar-vector}) & (\text{pseudoscalar-vector}) \\ \frac{\lambda}{4} \phi F_{\mu\nu} H^{\mu\nu} & \frac{\lambda}{4} a F_{\mu\nu} \tilde{H}^{\mu\nu} \\ H^{\mu\nu} = \partial^{\mu} V^{\nu} - \partial^{\nu} V^{\mu} \end{array}$

- Dimension-5 coupling
- May come from, e.g. extra $U(1)_{T3R}$
- The mediator mass in the *t*-channel gives us a dial to control the momentum transfer, and therefore the "off-forward-ness" of the cosine spectrum at MiniBooNE
- γ and electrons both show up as similar cherenkov rings

Radiative Meson Decays: Standard Model

Gauge invariance: $\partial_{\mu}\pi^{+} \rightarrow \partial_{\mu}\pi^{+} - ieA_{\mu}\pi^{+}$

In the "chiral" $m_l \rightarrow 0$ limit, recovering the helicity suppression

Radiative Meson Decays: General Structure for a Massive Vector

 π

(c)

(a)Leptonic terms: lepton couplings
(b)"Internal Brem": quark couplings
(c)Contact terms: gauge invariance
(d)Structure dependent terms: vector meson interactions

Covariant decomposition:

$$T_{\mu\rho} = i \int d^4 x e^{ikx} \langle 0|T[j^V_{\mu}(x)j^+_{\rho}(0)]|\pi^+(p)\rangle$$

$$T_{\mu\rho} = \tilde{a}_0 g_{\mu\rho} + \tilde{b}_0 L_{\mu} k_{\rho} + \tilde{b}_1 L_{\rho} k_{\mu}$$

$$+ \tilde{b}_2 L_{\mu} L_{\rho} + \tilde{b}_3 k_{\mu} k_{\rho} + \epsilon_{\rho\mu\lambda\sigma} L^{\lambda} k^{\sigma} F_V$$

 $\mathcal{M} = i \frac{G_F}{\sqrt{2}} \varepsilon^{\mu} \left[\bar{u}_{\ell} \gamma^{\rho} (1 - \gamma^5) v_{\nu} \right] T_{\mu\rho}$

- *L* is total lepton momentum
- *k* is the massive vector momentum

Radiative Meson Decays: General Structure for a Massive Vector

$$\mathcal{M} = i \frac{G_F}{\sqrt{2}} \varepsilon^{\mu} \left[\bar{u}_{\ell} \gamma^{\rho} (1 - \gamma^5) v_{\nu} \right] T_{\mu\rho}$$

$$\begin{array}{c|c} \pi & & \\ \hline & \\ \hline & \\ \rho, a_1, \dots \\ \nu \end{array}$$

- *L* is total lepton momentum
- *k* is the massive vector momentum
- For massless photons, the Ward identity applies:
- For massive vectors, it doesn't need to except in gauge invariant cases (e.g. Stückelberg fields) – to be conservative, we admit it:

Covariant decomposition:

$$T_{\mu\rho} = i \int d^4 x e^{ikx} \langle 0|T[j^V_{\mu}(x)j^+_{\rho}(0)]|\pi^+(p)\rangle$$

$$T_{\mu\rho} = \tilde{a}_0 g_{\mu\rho} + \tilde{b}_0 L_{\mu} k_{\rho} + \tilde{b}_1 L_{\rho} k_{\mu}$$

$$+ \tilde{b}_2 L_{\mu} L_{\rho} + \tilde{b}_3 k_{\mu} k_{\rho} + \epsilon_{\rho\mu\lambda\sigma} L^{\lambda} k^{\sigma} F_V$$

$$\tilde{a}_0 + \tilde{b}_0(L \cdot k) + \tilde{b}_3 m_V^2 = i f_\pi$$
$$\tilde{b}_1 m_V^2 + \tilde{b}_2(L \cdot k) = i f_\pi$$

 $k^{\mu}T_{\mu\rho} = ip_{\rho}f_{\pi} = i(L+k)_{\rho}f_{\pi}.$ (Ward Identity)

$$\tilde{a}_{0} + \tilde{b}_{0}(L \cdot k) + \tilde{b}_{3}m_{V}^{2} = if_{\pi}$$

$$\tilde{b}_{1}m_{V}^{2} + \tilde{b}_{2}(L \cdot k) = if_{\pi}$$

$$T_{\mu\rho} = \tilde{a}_{0}g_{\mu\rho} + \tilde{b}_{0}L_{\mu}k_{\rho} + \tilde{b}_{1}L_{\rho}k_{\mu}$$

$$+ \tilde{b}_{2}L_{\mu}L_{\rho} + \tilde{b}_{3}k_{\mu}k_{\rho} + \epsilon_{\rho\mu\lambda\sigma}L^{\lambda}k^{\sigma}F_{V}$$

$$\tilde{b}_{2} = 2\tilde{b}_{1} \longrightarrow \text{Recover IB2 Term}$$

$$\frac{\pi}{2}\pi \int_{\nu}^{V} \int_{\nu}^{l}$$

$$\tilde{a}_{0} = if_{\pi}, \tilde{b}_{i} = 0 \longrightarrow \text{Traditional contact}$$

$$\frac{\pi}{2}\int_{(c)}^{V} \int_{\nu}^{l}$$

Dark Sector Chiral Perturbation Theory: What is the larger picture?

$$\mathcal{L} \supset \sum_{q} g_{q} V_{\mu} \bar{q} \gamma^{\mu} q \downarrow$$

$$\mathcal{L}_{hp}^{\chi PT} \supset \frac{f_{\pi}^2}{4} \operatorname{Tr} \left[(\partial_{\mu} \mathbf{U} - iV_{\mu} \{ \mathbf{g}_X, \mathbf{U} \}) (\partial^{\mu} \mathbf{U} + iV^{\mu} \{ \mathbf{g}_X, \mathbf{U} \}) \right]$$
(2)

where the octet of meson states are contained in the Goldstone field Φ in the 3-flavor quark basis,

$$\mathbf{U} = e^{i\sqrt{2}\Phi/f_{\pi}}, \ \Phi = \begin{pmatrix} \frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{8}}{\sqrt{6}} & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{\pi^{0}}{\sqrt{2}} + \frac{\eta_{8}}{\sqrt{6}} & K^{0} \\ K^{-} & \overline{K}^{0} & -\frac{2\eta_{8}}{\sqrt{6}} \end{pmatrix}.$$
(3)

Further, for simplicity we select only up- and down-type quark couplings in the coupling matrix \mathbf{g}_X ;

$$\mathbf{g}_X \equiv \begin{pmatrix} g_u & 0 & 0\\ 0 & g_d & 0\\ 0 & 0 & 0 \end{pmatrix} \tag{4}$$

Quark couplings → We generically expect couplings to both neutral and charged mesons!

$$\mathcal{L}_{hp}^{\chi PT} \supset i(g_u - g_d) V_\mu \pi^+(\partial^\mu \pi^-)$$

Probing the Meson-portal Dark Sector at Stopped-Pion Facilities

Testing this explanation at CCM (Coherent CAPTAIN-Mills)

- 800 MeV *p* beam on W target at Lujan (LANL)
- 10t LAr liquid scintillator
- ~20m baseline

SBND

- Expected 6.6E+20 POT from BNB target mode
- 110 m baseline
- 112t fiducial mass LAr TPC; γ, e^- final states can be distinguished
- Short baseline, large active mass → great potential to check the MiniBooNE anomaly and charged meson-based explanations

SBND

N

- Probing the single-mediator scenario: SBND as a complimentary check to stopped-pion facilities
- The charged pion and neutral pion contributions to the excess can both be constrained
- Ability to distinguish between different BSM final states in TPC

IB2, $m_V = 5$ MeV

SBND

- Probing the single-mediator scenario: SBND as a complimentary check to stopped-pion facilities
- The charged pion and neutral pion contributions to the excess can both be constrained
- Ability to distinguish between different BSM final states in TPC

19

Outlook

- Significant hints that if the MB anomaly is explained by BSM, it should be correlated to the charged mesons
- DM production in 3-body decays are also interesting in their own right, studied now in a flurry of new works
- If there is a meson portal to dark sector states, we could anticipate quark couplings → leads to chiPT picture, neutral + charged meson pheno
- This opens the door to look for these production modes at neutrino facilities! CCM, BNB, NuMI...
- More work to be done: modeling of the focusing horns, mapping out the chiPT picture, GEANT4 flux validation...

Acknowledgements

Close Collaborators:

Bhaskar Dutta (Advisor)

Doojin Kim

Richard Van de Water

Edward Dunton

Wei-Chih Huang

Backup deck

Note: 2-to-2 scattering Monte Carlo

- 1. Draw uniform angles on the 2-sphere for outgoing momenta in CM frame
- 2. Boost momenta to lab frame
- 3. MC weights are $d\sigma_i = \frac{d\sigma}{d(\cos\theta^*)} d(\cos\theta^*) \sim \frac{2}{N} \frac{d\sigma(\theta_i)}{d(\cos\theta^*)}$ for N samples. $d\sigma_i$ is frame invariant in the limit of large N.

Testing this explanation at CCM (Coherent CAPTAIN-Mills)

- 800 MeV *p* beam on W target at Lujan (LANL)
- 10t LAr liquid scintillator
- ~20m baseline

We get both charged and neutral

pi-DAR components

PIENU Constraints on rare pion decays

2102.07381, PIENU Collaboration

MiniBooNE: Neutral Meson Fluxes

See Wooyoung's talk for more!

ALPlib: Simulation Pipeline

