BSM Searches at Short Baseline LArTPCs

Yun-Tse Tsai (SLAC) Nu Tools for BSM Workshop December 15, 2022

LArTPC Features

- LAr: large interaction rate
- Modular and scalable
- Nearly fully instrumented
- Millimeter resolution
- Calorimetric measurement
 - e/γ separation
- Low detection threshold for protons
- Supernova V_e (E~10 MeV)
- Charge collection at millisecond time-scale

Slow Detector on Surface

Run 1147 Event 0. August 6th 2015 16:59

Challenges:

Cosmic ray background

 Large amount of data: triggering

200 cm

200 cm

Slow Detector on Surface

Not Ideal for Natural Source

Neutrino Beam

Visible interaction or decay products

- High intensity proton beam + fixed target
- Produce charged and neutral mesons: π^{\pm} , K[±], π^{0} , etc.
- BSM particles produced via Higgs, vector, neutrino, ALP portals, dark neutrinos, Vphilic mediators, etc.
- Detect SM particles from interactions or decays of the BSM particles

Detection: Interaction

Elastic Scattering

Resonance Scattering

Deep Inelastic Scattering

- BSM-electron scattering: e signature
- BSM-nucleon scattering: typically neutral current-like
 - Nuclear effects smear the topology
- Challenging on modeling BSM signals, and reducing and precisely constraining neutrino background

Detection: Decay Products

BSM particle travels along the neutrino beam line and decay in flight or at rest

Ν

Detector

Detection: Decay Products

BSM particle travels along the neutrino beam line and decay in flight or at rest

Ν

Effectively event rate production x decay rate. Example: heavy neutral lepton (N) decays into μπ

Detector

A decay channel

Short Baseline Program

- eV-scale sterile v: measured by $v_{\mu} \rightarrow v_{e}$ oscillation
- Measure v-Ar cross section
- BNB v_{μ} : 8 GeV protons, v energy peak at ~600 MeV
- 3 LArTPC detectors on surface in different baselines

Free Neutrinos from NuMI

• NuMI v_{μ} : I 20 GeV protons

- Off-axis neutrino beams for MicroBooNE and ICARUS
- v-Ar cross section measurements
- BSM searches from both BNB and NuMI

BSM Search@Short Baselines

=3.18)

oNE

ection

- eV-scale sterile neutrino search by $V_{\mu} \rightarrow V_{e}$
 - LSND & MiniBooNE anomalies
- v-Ar cross section measurements
- Search for BSM particles
 - Require more dedicated tools

<u>Today's menu</u>

- Neutrino portal: Heavy neutral lepton (HNL)
- Higgs portal scalar particle (HPS)
- Physics motivation in Hostert and Putnam's talks

BSM Search@Short Baselines

=3.18)

oNE

ection

- eV-scale sterile neutrino search by $V_{\mu} \rightarrow V_{e}$
 - LSND & MiniBooNE anomalies
- v-Ar cross section measurements
- Search for BSM particles
 - Require more dedicated tools

<u>Today's menu</u>

- Neutrino portal: Heavy neutral lepton (HNL)
- Higgs portal scalar particle (HPS)
- Physics motivation in Hostert and Putnam's talks

BSM Searches at MicroBooNE

Publication: <u>https://microboone.fnal.gov/documents-publications/</u>

MicroBooNE

- LAr: 85 tons (active)
- | TPC: 2.3mx2.5mx|0.4m
 - 8192 wires, 3-mm pitch
 - 2MHz sampling rate
- Light collection
 - 32 PMTs+4 paddle PMTs
 - 64MHz sampling rate
- Cosmic ray tagger
- Operation: 2015-2021, collected 1.5×10²¹ POT

Background: Cosmic Rays

Background: Cosmic Rays

• Detectors with ms readout on surface: a large amount of cosmic rays

µBooNE

- Common with all the physics analyses
- 4kHz cosmic rays at MicroBooNE

104 cm

Background: SM Neutrinos

Detectors designed for neutrinos: neutrinos as the second main background for other BSM searches

Run 3471 Event 54287, October 21st, 2015

Heavy Neutral Lepton

Decay Channels

- 2 or 3-body decays
- Charged current: $N \rightarrow \gamma \nu$, $N \rightarrow \mu e \nu$, $N \rightarrow e \pi$, $N \rightarrow \mu \pi$
- Charged and neutral current: $N \rightarrow 3v$, $N \rightarrow eev$, $N \rightarrow v\pi^0$, $N \rightarrow \mu\mu\nu$

Decay Channels

- 2 or 3-body decays
- Charged current: $N \rightarrow \gamma \nu$, $N \rightarrow \mu e \nu$, $N \rightarrow e \pi$, $N \rightarrow \mu \pi$
- Charged and neutral current: $N \rightarrow 3v$, $N \rightarrow eev$, $N \rightarrow v\pi^0$, $N \rightarrow \mu\mu\nu$

Sensitivity on HNL Mass

Sensitivity on HNL Mass

Majorana v.s. Dirac

- HNL can be a Majorana or Dirac particle
- Majorana HNL
 - $N \rightarrow \mu^{-}\pi^{+}$ and $N \rightarrow \mu^{+}\pi^{-}$
 - Sum of μ-π+ and μ+π- is isotropic in the HNL rest frame
- Dirac HNL
 - $N \rightarrow \mu \pi^+$ only
 - Half event rate compared to Majorana HNL
 - Asymmetric angular spectrum

We use the Majorana assumption in the following slides, while presenting the results for both the cases

Simulated HNL Event

Event with an HNL

A simulated HNL overlaid with a pure cosmic data event

2020 analysis, BNB 2×10²⁰ POT Phys. Rev. D 101 052001

470m

27

470m

BNB
HNL Late Trigger Window

HNL Late Trigger Window

Snapshot of the detector

Snapshot of the detector

- Use the events triggered in late trigger window, but vetoed those triggered in the BNB trigger window
- Measure an excess of events in a data sample containing only cosmic rays

Small Signal Fraction

- Lower kaon production rate at BNB than NuMI
- The analysis strategy yields a small fraction of signals
- Better v beam structure simulation and reconstruction will improve the sensitivity

K Decays at NuMI Absorber

2022 analysis, NuMI 7×10²⁰ POT Phys. Rev. D 106 092006

K Decays at NuMI Absorber

K Decays at NuMI Absorber

Kinematic Distributions

600

Candidates

100

300

[Data-Pred]/Pred

50

250

300

(Data-Pred)/Pred

2020 Analysis

2022 Analysis

С

е

Higgs Portal Scalar Particle

Kaon decays at rest in the NuMI absorber

$K^+ \rightarrow \pi^+ S$ (S: HPS)

 S→e⁺e⁻: 2021 analysis, <u>Phys. Rev. Lett. 127, 151803</u>

 π

Analysis Strategy

2021 analysis, S→e⁺e⁻ Sensitive to m_S<212 MeV

EXAMPLATION 150 MeV/d' scalar decay

2022 analysis, $S \rightarrow \mu^+\mu^-$ Sensitive to 212<m_s<275 MeV

I.93×10²⁰ POT Only geometrical quantities used (Shower reconstruction less mature) 7×10²⁰ POT Geometrical and kinematic quantities used

HPS Sensitivity

Systematic Uncertainty

Analyses presented today are statistical limited

	HNL 2020	HPS 2021	HNL 2022 HPS 2022
HNL/HPS Flux	8%	30%	30%
SM v Flux		26.6%	(5-10)%
σ(SM v)		33.4%	(5-10)%
Trigger	8%		
Detector	10%	70%	(10-20)%
Simulation Stat.		38%/28.2%	(5-42)%

Systematic Uncertainty

Analyses presented today are statistical limited

	HNL 2020	HPS 2021	HNL 2022 HPS 2022
HNL/HPS Flux	8%	30%	30%
SM v Flux		26.6%	⁵ The rate of kaon
σ(SM v)		33.4%	production at rest in the NuMI absorber
Trigger	8%		
Detector	10%	70%	(10-20)%
Simulation Stat.		38%/28.2%	(5-42)%

Systematic Uncertainty

Analyses presented today are statistical limited

	HNL 2020	HPS 2021	HNL 2022 HPS 2022
HNL/HPS Flux	8%	30%	30%
SM v Flux		26.6%	⁵ The rate of kaon
σ(SM v)		33.4%	production at rest in the NuMI absorber
Trigger	8%		
Detector	10%	70%	(10-20)%
Simulation Stat.		38%/28.2%	5 Dominated by the sample statistics

Wish List

- Light detector: high sampling rates and detection efficiency (ICARUS and SBND)
- Light reconstruction: timing, calorimetry
- Light+charge signal matching
- Charge reconstruction: energy of electromagnetic showers, track/shower separation, particle ID, reconstruction optimized to signal directions
- Cosmic ray removal: overburden (ICARUS), cosmic ray taggers (MicroBooNE, ICARUS, SBND), light signal matching
- Detector modeling: more detector measurements
- SM neutrino flux and cross section modeling
- BSM flux and interaction/decay modeling
- High signal/noise for MeV-scale activities

Remark

- Search for interactions of BSM particles
 - MC simulation of BSM-Ar interactions required
- Search for decays of BSM particles
 - Easy for signal MC simulation
 - Suffer from the density of LAr
- \bullet Most of desired tools also benefit oscillation and σ
- Analysis strategies to discriminate from SM neutrinos required (and from cosmic rays in SBN)
- Other <u>ongoing BSM efforts at MicroBooNE</u>
- Future LArTPCs with high intensity beam (DUNE ND-LAr) require to deal with pile-ups (modular detectors)

Backup

43

Time (-drift direction)

Wire

Dark Sector Landscape

Model	Production	Detection
Higgs Portal	K, B decay	Decay $(\ell^+\ell^-)$
	π^0, η Decay	Scattering (χe^- , χX , Dark Tridents)
Vector Portal	Proton Bremmstrahlung	Decay $(\ell^+ \ell^-, \pi^+ \pi^-)$
	Drell-Yan	Inelastic Decay $(\chi \to \chi' \ell^+ \ell^-)$
Neutrino Portal	$\pi, K, D_{(s)}, B$ decay	Decay (many final states)
ALP Portal	Meson Decay	Decay $(\gamma\gamma)$
(γ -coupling dominant)	Photon Fusion	Inverse Primakoff process
	Primakoff Process	
Dark Neutrinos	SM Neutrino	Upscattering + Decay ($\nu \rightarrow \nu_D, \nu_D \rightarrow \nu \ell^+ \ell^-$)
Dipole Portal	Dalitz Decay	Decay ($\nu_D \rightarrow \nu \gamma$)
ν philic Mediators	SM Neutrino	Scattering (Missing p_T , SM Tridents)

Table 1: A selection of models that can be probed by neutrino beam experiments.

Fermilab Booster Neutrino Beam (BNB)

Linac Length: I50m Proton energy: 400MeV Booster Circumference: 469m Proton energy: 8GeV

Fermilab Booster Neutrino Beam (BNB)

Linac Length: 150m Proton energy: 400MeV Booster Circumference: 469m Proton energy: 8GeV

Fermilab's Neutrinos in the Main Injector Beam (NuMI)

Tevatron

Main Injector Circumference: 3.3km Proton energy: 120GeV

Fermilab's Neutrinos in the Main Injector Beam (NuMI)

Tevatron

Main Injector Circumference: 3.3km Proton energy: 120GeV

Production

Accelerator neutrino beam or fixed target facility produce charged mesons, such as kaons, pions

Production

HNL Detection

HNL Detection

HNL travels along the neutrino beam line and decay in flight

Ν

Detect the decay products in the detector. Effectively event rate production x decay rate. Measure the mixing angle Θ_{µ4, e4, τ4} with each M_N Detector

A decay channel

HNL Flux from BNB

- Consider nonzero $\Theta_{\mu4}$, while $\Theta_{e4} = \Theta_{\tau4} = 0$
- HNL produced by $K \rightarrow N\mu$
- Fully simulate the HNL flux based on the parent mesons (kaons) of SM neutrino flux simulation
- Number of events traversing MicroBooNE proportional to Φ_N(E)xP_{decay}(E)

2-body Decay Signature

 α^{-}

u

 \overline{d}

 π^+

$| \rightarrow | \pm \pi^{\mp}$

N

- Fully reconstructed final states
- Able to reconstruct the invariant mass of HNL, a powerful discriminant

 $U_{\alpha 4}$

W

Samples

Background sample: pure cosmic rays data fulfilling the same trigger requirement but not in coincidence with BNB

Signal sample for selection optimization and BDT training: pure HNL simulation

Kinematic Selection

- Cosmic background comes from broken tracks and sometimes delta rays
- Reduce cosmic background
 - Track opening angle $\Delta \phi < 2.8$ rad
 - Invariant mass
 < 500 MeV
 - Track momentum calculated by its length
- Signal efficiency: (45-50)%
- Background efficiency: 1.6%

BDTTraining

- Five kinematic variables for BDT training
 - Δφ: 3D opening angle between the two tracks from the HNL decay
 - |p_N|: momentum of the HNL candidate
 - θ: polar angle of the HNL candidate
 - Φ: azimuthal angle of the HNL candidate
 - m_N : the invariant mass of the $\mu\pi$ pair

BDT Discriminant

- 5 input variables of reconstructed HNL kinematics for BDT training
- Validate the MC performance with the SM neutrino MC and data samples
- Log-likelihood ratio (LLR) test statistic and set limits at 90% confidence level

Background Reduction

- SM neutrinos
 - 2020 analysis <u>Phys. Rev. D 101 052001</u> Utilize the longer time of flight of HNL produced by BNB, 2×10²⁰ POT
 - 2022 analysis <u>Phys. Rev. D 106 092006</u> Utilize the kaon decaying at rest in the hadron absorber of NuMI, 7×10²⁰ POT
 - Off-axis of the NuMI neutrinos
 - Almost opposite direction to most of neutrinos
- Cosmic rays
 - The cosmic ray tagger removes cosmic rays for part of the data used in the 2022 analysis
Outlook at SBN

- N→e[±]π[∓] larger parameter space
- Higher sampling rate of light systems in ICARUS and SBND
 - Events outside beam buckets
- Better sensitivity & cross check

