

Achilles: The BSM Pipeline

Joshua Isaacson In Collaboration with: S. Antu, R. Farnsworth, S. Höche, W. Jay, D. Lopez Gutierrez, A. Lovato, P.A.N. Machado, L. Pickering, N. Rocco, S. Wang PITT PACC Workshop: Nu Tools for BSM at Neutrino Beam Facilites 16 December 2022

Achilles: A CHIcago Land Lepton Event Simulator

Project Goals:

- Theory driven
- Develop modular neutrino event generator
- Provide means for easy extension by end users
- Provide automated BSM calculations for neutrino experiments
- Evaluate theory uncertainties

.d8bd d8' `8b d8P 8800088 8P 888~~88 8b 88~~88 88 88 88 89 YP YP `Y	288b. db db Y8 88 88 880008 88~~~88 0 d8 88 88 /88P' YP YF	d888888b 88 88 88 88 .88 88 9888888P	db 88 88 88 88 88booo. Y88888P	db 88 88 88 88 88booo. Y88888P	d88888b 88' 8800000 88 88. Y88888P	.d8888. 88' YP `8bo. `Y8b. db 8D `8888Y'
. 4399888898988898988989898989898989898989						
Version: 1.0.0 Authors: Joshua Isaacson, William Jay, Alessandro Lovato, Pedro A. Machado, Noeni Rocco						

$$\frac{N_{FD}}{N_{ND}} (E_{\text{reco}}) \propto \frac{\int dE_{\nu} \frac{d\phi_{\alpha}^{\text{FD}}}{dE_{\nu}} P(\nu_{\alpha} \to \nu_{\beta}; E_{\nu}) \sigma_{\beta}(E_{\nu}) \mathcal{M}_{\alpha}^{\text{FD}}(E_{\nu}, E_{\text{reco}})}{\int dE_{\nu} \frac{d\phi_{\alpha}^{\text{ND}}}{dE_{\nu}} \sigma_{\alpha}(E_{\nu}) \mathcal{M}_{\alpha}^{\text{ND}}(E_{\nu}, E_{\text{reco}})}$$

• Number of events in the near/far detector

$$\frac{N_{FD}}{N_{ND}}(E_{\rm reco}) \propto \frac{\int dE_{\nu} \frac{d\phi_{\alpha}^{\rm FD}}{dE_{\nu}} P(\nu_{\alpha} \to \nu_{\beta}; E_{\nu}) \sigma_{\beta}(E_{\nu}) \mathcal{M}_{\alpha}^{\rm FD}(E_{\nu}, E_{\rm reco})}{\int dE_{\nu} \frac{d\phi_{\alpha}^{\rm ND}}{dE_{\nu}} \sigma_{\alpha}(E_{\nu}) \mathcal{M}_{\alpha}^{\rm ND}(E_{\nu}, E_{\rm reco})}$$

- Number of events in the near/far detector
- Probability to oscillate from α to β /

- $\bullet\,$ Number of events in the near/far detector
- \bullet Probability to oscillate from α to β
- Neutrino-nucleus interaction cross section k

$$\frac{N_{FD}}{N_{ND}}(E_{\rm reco}) \propto \frac{\int dE_{\nu} \frac{d\phi_{\alpha}^{\rm FD}}{dE_{\nu}} P(\nu_{\alpha} \to \nu_{\beta}; E_{\nu}) \sigma_{\beta}(E_{\nu}) \mathcal{M}_{\alpha}^{\rm FD}(E_{\nu}, E_{\rm reco})}{\int dE_{\nu} \frac{d\phi_{\alpha}^{\rm ND}}{dE_{\nu}} \sigma_{\alpha}(E_{\nu}) \mathcal{M}_{\alpha}^{\rm ND}(E_{\nu}, E_{\rm reco})}$$

- Number of events in the near/far detector
- \bullet Probability to oscillate from α to β
- Neutrino-nucleus interaction cross section
- Migration matrix. Depends on topology of detected event (i.e. number of protons, etc.)

$$\frac{N_{FD}}{N_{ND}}(E_{\text{reco}}) \propto \frac{\int dE_{\nu} \frac{d\phi_{\alpha}^{\text{FD}}}{dE_{\nu}} P(\nu_{\alpha} \to \nu_{\beta}; E_{\nu}) \sigma_{\beta}(E_{\nu}) \mathcal{M}_{\alpha}^{\text{FD}}(E_{\nu}, E_{\text{reco}})}{\int dE_{\nu} \frac{d\phi_{\alpha}^{\text{ND}}}{dE_{\nu}} \sigma_{\alpha}(E_{\nu})} \mathcal{M}_{\alpha}^{\text{ND}}(E_{\nu}, E_{\text{reco}})$$

- Number of events in the near/far detector
- \bullet Probability to oscillate from α to β
- Neutrino-nucleus interaction cross section
- Migration matrix. Depends on topology of detected event (i.e. number of protons, etc.)
- $\bullet\,$ Ratio helps control systematics, but cross sections do not cancel out from ratio $\to\,$ requires theory predictions

Lepton-Nucleus reaction processes

Credit: Noemi Rocco

Why a new generator? (CLAS / e4v)

• Differential distributions independent of nuclear physics work ok

• Reconstruction of the neutrino energy needs significant work

[Nature 599, 565-570 (2021)]

Why a new generator? (NOvA)

Source of Uncertainty	$\nu_e \text{ signal } (\%)$	Total beam background (%)
Cross-section and FSI	7.7	8.6
Normalization	3.5	3.4
Calibration	3.2	4.3
Detector response	0.67	2.8
Neutrino flux	0.63	0.43
ν_e extrapolation	0.36	1.2
Total systematic uncertainty	9.2	11
Statistical uncertainty	15	22
Total uncertainty	18	25

[M. A. Acero, et al. NOvA collaboration, Phys. Rev. D 98, 032012]

• Cross section uncertainty one of dominant uncertainties

 NOvA systematics and statistical uncertainty equal • DUNE and HyperK will have significantly more events

Why a new generator?

Oscillation Measurements

- Only measure events and not fluxes directly
- Fit oscillation parameters by taking ratio of number of events in ${\cal E}_{reco}$ bins
- Cross sections do not exactly cancel in ratio, thus they are crucial
- Requires fully differential predictions (Migration matrices):
 - Requires fully-exclusive predictions (*i.e* keep track of all particles in event simulation)
- $\bullet\,$ DUNE and HyperK require precision on the cross sections of about $1\%\,$

Other Measurements

- The SBN program, and both DUNE and HyperK near detectors are general purpose
- Leverage them for BSM searches
- Requires both SM and BSM fully differential predictions

Separating Primary Interaction and Cascade

General Lepton-Nucleus Scattering Cross Section

$$d\sigma = \left(\frac{1}{|v_A - v_\ell|} \frac{1}{4E_A^{\text{in}} E_\ell^{\text{in}}}\right) |\mathcal{M}|^2 \prod_f \frac{d^3 p_f}{(2\pi)^3} (2\pi)^4 \delta^4 \left(k_A + k_\ell - \sum_f p_f\right)$$

[JI, et. al. 2205.06378]

Introduction

Separating Primary Interaction and Cascade

General Lepton-Nucleus Scattering Cross Section

$$\mathrm{d}\sigma = \left(\frac{1}{|v_A - v_\ell|} \frac{1}{4E_A^{\mathrm{in}} E_\ell^{\mathrm{in}}}\right) |\mathcal{M}|^2 \prod_f \frac{\mathrm{d}^3 p_f}{(2\pi)^3} (2\pi)^4 \delta^4 \left(k_A + k_\ell - \sum_f p_f\right)$$

Matrix Element Schematically

$$\left|\mathcal{M}\left(\{k\} \to \{p\}\right)\right|^2 = \left| \sum_{p'} \mathcal{V}(\{k\} \to \{p'\}) \times \mathcal{P}(\{p'\} \to \{p\}) \right|^2$$

[JI, et. al. 2205.06378]

Introduction

Separating Primary Interaction and Cascade

General Lepton-Nucleus Scattering Cross Section

$$\mathrm{d}\sigma = \left(\frac{1}{|v_A - v_\ell|} \frac{1}{4E_A^{\mathrm{in}} E_\ell^{\mathrm{in}}}\right) |\mathcal{M}|^2 \prod_f \frac{\mathrm{d}^3 p_f}{(2\pi)^3} (2\pi)^4 \delta^4 \left(k_A + k_\ell - \sum_f p_f\right)$$

Matrix Element Schematically

$$\left|\mathcal{M}\left(\{k\} \to \{p\}\right)\right|^{2} = \left|\sum_{p'} \mathcal{V}\left(\{k\} \to \{p'\}\right) \times \mathcal{P}\left(\{p'\} \to \{p\}\right)\right|^{2}$$

• Primary interaction -

Separating Primary Interaction and Cascade

General Lepton-Nucleus Scattering Cross Section

$$\mathrm{d}\sigma = \left(\frac{1}{|v_A - v_\ell|} \frac{1}{4E_A^{\mathrm{in}} E_\ell^{\mathrm{in}}}\right) |\mathcal{M}|^2 \prod_f \frac{\mathrm{d}^3 p_f}{(2\pi)^3} (2\pi)^4 \delta^4 \left(k_A + k_\ell - \sum_f p_f\right)$$

Matrix Element Schematically

$$|\mathcal{M}(\{k\} \to \{p\})|^2 = \left| \sum_{p'} \mathcal{V}(\{k\} \to \{p'\}) \times \mathcal{P}(\{p'\} \to \{p\}) \right|^2$$

- Primary interaction
- Evolution out of nucleus _

[JI, et. al. 2205.06378]

7 / 31 🗳 Fermilab

Separating Primary Interaction and Cascade

General Lepton-Nucleus Scattering Cross Section

$$\mathrm{d}\sigma = \left(\frac{1}{|v_A - v_\ell|} \frac{1}{4E_A^{\mathrm{in}} E_\ell^{\mathrm{in}}}\right) |\mathcal{M}|^2 \prod_f \frac{\mathrm{d}^3 p_f}{(2\pi)^3} (2\pi)^4 \delta^4 \left(k_A + k_\ell - \sum_f p_f\right)$$

Matrix Element Schematically Approximation

$$\left|\mathcal{M}\left(\{k\} \to \{p\}\right)\right|^2 = \sum_{p'} \left|\mathcal{V}(\{k\} \to \{p'\})\right|^2 \times \left|\mathcal{P}(\{p'\} \to \{p\})\right|^2$$

- Primary interaction
- Evolution out of nucleus
- Approximate as incoherent product of primary interaction and cascade

[JI, et. al. 2205.06378]

Aside: Relationship to LHC event generation

Neutrino Event Generation		LHC Event Generation
Primary neutrino interaction	\longleftrightarrow	Hard interaction
Intranuclear cascade	\longleftrightarrow	Parton shower

Intranuclear Cascade:

$$\exp\left\{-i\sum_{j=2}^{A}\int_{0}^{t}d\tau\,\Gamma_{k_{i}}(|\mathbf{r}_{1}+\mathbf{v}\tau-\mathbf{r}_{j}|)\right\}$$

Parton Shower:

$$\exp\left\{-i\sum_{i=1}^k \int \mathrm{d}^4 x_i \; j^\mu_a(x_i) A^a_\mu(x_i)\right\}$$

 Neutrino event generators can benefit from history of the LHC event generators push for precision

Factorization

- For Quasielastic scattering, factorize primary interaction as: $|\Psi_f\rangle = |p\rangle \otimes |\Psi_f^{A-1}\rangle$
- Initial state given via spectral function (probability distribution of removing a bound nucleon):

$$S_h(\mathbf{k}_h, E') = \sum_{f_{A-1}} |\langle \Psi_0 | k \rangle \otimes |\Psi_f^{A-1} \rangle|^2 \delta(E' + E_0^A - E_f^{A-1})$$

- Spectral function based on correlated basis function theory [Phys. A 579, 493 (1994)]
- All but DIS implemented in this formalism [Phys.Rev.C 100 (2019) 4,045503] just need to interface with Achilles.
- Achilles provides general purpose interface to allow for other nuclear models

[Rev. Mod. Phys. 80, 189 (2008)]

J. Isaacson

BSM Motivation: MiniBooNE and MicroBooNE

[arXiv:2110.14054]

- High intensity beams enable probes of weakly coupled BSM
- Probe different mass region than LHC
- MiniBooNE sees excess of events (MicroBooNE does not for single electrons)
- Other event generators cannot properly simulate these processes (requires properly handing spin correlations)

Using Currents

Hadronic tensor $(W^{\mu
u})$ given by most general Lorentz structure

$$W^{\mu\nu} = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)W_1 + \frac{\hat{p}_a^{\mu}\hat{p}_a^{\nu}}{p_a \cdot q}W_2 - i\epsilon^{\mu\nu\alpha\beta}\frac{q_{\alpha}p_{a\beta}}{2p_a \cdot q}W_3$$

Extending to BSM becomes complex to track all interferences:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_n} = \sum_{i,j} L_{\mu\nu}^{(ij)} W^{(ij)\mu\nu} = L_{\mu\nu}^{(\gamma\gamma)} W^{(\gamma\gamma)\mu\nu} + L_{\mu\nu}^{(\gamma Z)} W^{(\gamma Z)\mu\nu} + L_{\mu\nu}^{(Z\gamma)} W^{(Z\gamma)\mu\nu} + L_{\mu\nu}^{(ZZ)} W^{(ZZ)\mu\nu} + \cdots$$

Approaches such as the spectral function formalism can directly calculate currents:

$$W^{\mu} = \langle \psi_f^A | \mathcal{J}^{\mu} | \psi_0^A \rangle \to \sum_{p_a} \left[\langle \psi_f^{A-1} | \otimes \langle p_a | \right] | \psi_0^A \rangle \langle p_a + q | \sum_i \mathcal{J}_i^{\mu} | p_a \rangle,$$

This enables the automatic handling of interferences

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Phi_n} = \left|\sum_i L_\mu^{(i)} W^{(i)\mu}\right|^2$$

FeynRules

- *Mathematica* Program
- Takes model file and Lagrangian as input
- Calculates the Feynman rules
- Outputs in Universal FeynRules Output (UFO) format

[arXiv:0806.4194, arXiv:1310.1921]

Hard Interaction

Handling Form Factors

Nuclear one-body nucleon current operators:

$$\begin{aligned} \mathcal{J}^{\mu} &= \left(\mathcal{J}^{\mu}_{V} + \mathcal{J}^{\mu}_{A}\right) \\ \mathcal{J}^{\mu}_{V} &= \gamma^{\mu} \mathcal{F}^{a}_{1} + i \sigma^{\mu\nu} q_{\nu} \frac{\mathcal{F}^{a}_{2}}{2M} \\ \mathcal{J}^{\mu}_{A} &= -\gamma^{\mu} \gamma_{5} \mathcal{F}^{a}_{A} - q^{\mu} \gamma_{5} \frac{\mathcal{F}^{a}_{P}}{M} \end{aligned}$$

Coherent Form Factors (spin-0 nucleus):

$$\mathcal{J}^{\mu} = (p_{\rm in} + p_{\rm out})^{\mu} \mathcal{F}_{\rm coh}$$

Standard Model Form Factors:

$$\begin{aligned} \mathcal{F}_{i}^{\gamma(p,n)} &= F_{i}^{p,n}, \qquad \mathcal{F}_{A}^{\gamma} = 0\\ \mathcal{F}_{i}^{W(p,n)} &= F_{i}^{p} - F_{i}^{n}, \qquad \mathcal{F}_{A}^{W} = F_{A}\\ \mathcal{F}_{i}^{Z(p)} &= \left(\frac{1}{2} - 2\sin^{2}\theta_{W}\right)F_{i}^{p} - \frac{1}{2}F_{i}^{n},\\ \mathcal{F}_{i}^{Z(n)} &= \left(\frac{1}{2} - 2\sin^{2}\theta_{W}\right)F_{i}^{n} - \frac{1}{2}F_{i}^{p}\\ \mathcal{F}_{A}^{Z(p)} &= \frac{1}{2}F_{A}, \qquad \mathcal{F}_{A}^{Z(n)} = -\frac{1}{2}F_{A}\end{aligned}$$

Hard Interaction

Handling Form Factors

Nuclear one-body nucleon current operators:

$$\begin{aligned} \mathcal{J}^{\mu} &= \left(\mathcal{J}^{\mu}_{V} + \mathcal{J}^{\mu}_{A}\right) \\ \mathcal{J}^{\mu}_{V} &= \gamma^{\mu} \mathcal{F}^{a}_{1} + i \sigma^{\mu\nu} q_{\nu} \frac{\mathcal{F}^{a}_{2}}{2M} \\ \mathcal{J}^{\mu}_{A} &= -\gamma^{\mu} \gamma_{5} \mathcal{F}^{a}_{A} - q^{\mu} \gamma_{5} \frac{\mathcal{F}^{a}_{P}}{M} \end{aligned}$$

Coherent Form Factors (spin-0 nucleus):

$$\mathcal{J}^{\mu} = (p_{\mathsf{in}} + p_{\mathsf{out}})^{\mu} \mathcal{F}_{\mathsf{coh}}$$

Straight-forward to extend to BSM

Standard Model Form Factors:

$$\begin{aligned} \mathcal{F}_{i}^{\gamma(p,n)} &= F_{i}^{p,n}, \qquad \mathcal{F}_{A}^{\gamma} = 0\\ \mathcal{F}_{i}^{W(p,n)} &= F_{i}^{p} - F_{i}^{n}, \qquad \mathcal{F}_{A}^{W} = F_{A}\\ \mathcal{F}_{i}^{Z(p)} &= \left(\frac{1}{2} - 2\sin^{2}\theta_{W}\right)F_{i}^{p} - \frac{1}{2}F_{i}^{n},\\ \mathcal{F}_{i}^{Z(n)} &= \left(\frac{1}{2} - 2\sin^{2}\theta_{W}\right)F_{i}^{n} - \frac{1}{2}F_{i}^{p}\\ \mathcal{F}_{A}^{Z(p)} &= \frac{1}{2}F_{A}, \qquad \mathcal{F}_{A}^{Z(n)} = -\frac{1}{2}F_{A}\end{aligned}$$

Recursive Matrix Element Generation

$$\mathcal{J}_{\alpha}(\pi) = P_{\alpha}(\pi) \sum_{\mathcal{V}_{\alpha}^{\alpha_{1},\alpha_{2}}} \sum_{\mathcal{P}_{2}(\pi)} \mathcal{S}(\pi_{1},\pi_{2}) V_{\alpha}^{\alpha_{1},\alpha_{2}}(\pi_{1},\pi_{2}) \mathcal{J}_{\alpha_{1}}(\pi_{1}) \mathcal{J}_{\alpha_{2}}(\pi_{2},\pi_{2}) \mathcal{J}_{\alpha_{1}}(\pi_{2},\pi_{2}) \mathcal{J}_{\alpha_{2}}(\pi_{2},\pi_{2}) \mathcal{J}_{\alpha_{$$

$$L^{(i)}_{\mu\nu}(1,...,m) = \mathcal{J}^{(i)}_{\mu}(1,...,m)$$
$$L^{(i,j)}_{\mu\nu}(1,...,m) = \mathcal{J}^{(i)}_{\mu}(1,...,m) \mathcal{J}^{(j)\dagger}_{\nu}(1,...,m)$$

Berends-Giele Recursion

(i)

- Reuse parts of calculation
- Most efficient for high multiplicity
- Reduces computation from $\mathcal{O}\left(n!\right)$ to $\mathcal{O}\left(n^{3}\right)$

[Nucl. Phys. B306(1988), 759]

Phase Space Generation

$$d\Phi_n(a,b;1,\ldots,n) = \delta^{(4)} \left(p_a + p_b - \sum_{i=1}^n p_i \right) \left[\prod_{i=1}^n \frac{d^4 p_i}{(2\pi)^3} \delta\left(p_i^2 - m_i^2 \right) \Theta\left(p_{i_0} \right) \right]$$

The above phase space definition does not contain the handling of initial states.

Algorithms for n-body phase space generation

- RAMBO [Comput. Phys. Commun. 40(1986) 359]
- Multi-channel techniques [hep-ph/9405257]
 - Recursive Phase Space [arXiv:0808.3674]

Consider $l + {}^{12}C \rightarrow l' + N + X$ in the quasielastic regime.

$\mathrm{d}\sigma \propto \mathrm{d}\Phi_2(a,b;1,2) \ \mathrm{d}^4 p_a \ \mathrm{d}^3 p_b$

Consider $l + {}^{12}C \rightarrow l' + N + X$ in the quasielastic regime.

• Phase space:
$$d\Phi_2(a,b;1,2) = \frac{\lambda(s_{ab},s_1,s_2)}{16\pi^2 2s_{ab}} d\cos\theta_1 d\phi_1$$

Consider $l + {}^{12}C \rightarrow l' + N + X$ in the quasielastic regime.

$$\mathrm{d}\sigma \propto \left[\mathrm{d}\Phi_2(a,b;1,2)\right] \, \mathrm{d}^4 p_a \, \mathrm{d}^3 p_b$$
• Phase space:
$$\mathrm{d}\Phi_2(a,b;1,2) = \frac{\lambda(s_{ab},s_1,s_2)}{16\pi^2 2s_{ab}} \mathrm{d}\cos\theta_1 \mathrm{d}\phi_1$$

• Initial nucleon:
$$d^4p_a = |\vec{p}_a|^2 dp_a dE_r d\cos\theta_a d\phi_a$$

Consider $l + {}^{12}C \rightarrow l' + N + X$ in the quasielastic regime.

$$\mathrm{d}\sigma \propto \mathrm{d}\Phi_2(a,b;1,2) \, \mathrm{d}^4 p_a \, \mathrm{d}^3 p_b$$

• Phase space:
$$d\Phi_2(a,b;1,2) = \frac{\lambda(s_{ab},s_1,s_2)}{16\pi^2 2s_{ab}} d\cos\theta_1 d\phi_1$$

• Initial nucleon:
$$d^4p_a = |\vec{p_a}|^2 dp_a dE_r d\cos\theta_a d\phi_a$$

• Initial lepton (Here only monochromatic): $d^3p_b = \delta^3(p_b - p_{beam})d^3p_b$

Consider $l + {}^{12}C \rightarrow l' + N + X$ in the quasielastic regime.

 $\mathrm{d}\sigma \propto \mathrm{d}\Phi_2(a,b;1,2) \,\mathrm{d}^4 p_a \,\mathrm{d}^3 p_b$

• Phase space:
$$\mathrm{d}\Phi_2(a,b;1,2) = rac{\lambda(s_{ab},s_1,s_2)}{16\pi^2 2s_{ab}}\mathrm{d}\cos\theta_1\mathrm{d}\phi_1$$

• Initial nucleon: $d^4p_a = |\vec{p_a}|^2 dp_a dE_r d\cos\theta_a d\phi_a$

• Initial lepton (Here only monochromatic): $d^3p_b = \delta^3(p_b - p_{beam})d^3p_b$

Quasielastic Delta Function: $\delta(E_b - E_1 - E_r + m - E_2)$ Phase Space Delta Function: $\delta(E_a + E_b - E_1 - E_2)$ Define initial nucleon energy as $E_a = m - E_r$. Allows use of phase space tools developed at LHC.

Final State Interactions

Modify Primary Interaction:

- Captures rate change from FSI
- Loses all information about hadronic final state
- Primarily done using folding functions

Intranuclear Cascade:

- Unitary process (*i.e.* no rate change)
- Contains information about hadronic final state
- Primarily done via Monte Carlo methods
- **Note**: Both approaches attempt to capture effects from nuclear potential. Therefore, can only use one or the other to avoid double counting effects.
- Note: Intranuclear cascade is only method to provide fully exclusive final states required by experiments

[JI, et. al. 2205.06378]

Final State Interactions

Modify Primary Interaction:

- Captures rate change from FSI
- Loses all information about hadronic final state
- Primarily done using folding functions

Intranuclear Cascade:

- Unitary process (*i.e.* no rate change)
- Contains information about hadronic final state
- Primarily done via Monte Carlo methods
- **Note**: Both approaches attempt to capture effects from nuclear potential. Therefore, can only use one or the other to avoid double counting effects.
- **Note**: Intranuclear cascade is only method to provide fully exclusive final states required by experiments

Matrix Element Schematically Approximation

$$|\mathcal{M}\left(\{k\} \to \{p\}\right)|^2 = \sum_{p'} \left|\mathcal{V}(\{k\} \to \{p'\})\right|^2 \times \left|\mathcal{P}(\{p'\} \to \{p\})\right|^2$$

Algorithm Overview

Algorithm Overview:

- Propagate struck nucleons
- Determine interactions based on impact parameter and cross-section
- Pauli blocking used to restrict final state phase space

Interaction Probabilities:

[JI, et. al. Phys. Rev. C 103(2021) 1, 015502] , [JI, et. al. 2205.06378]

Propagation with Potential

Initial Momentum: 250 MeV

- Propagation using symplectic integrator for non-separable Hamiltonians [1609.02212]
- Energy is conserved to a high degree of precision
- Extremely stable

• Blue: Non-relativistic potential $(E = \sqrt{p^2 + m^2} + V)$

[Phys. Rev. C. 38, 2967]

• Red: Relativistic optical potential ($E = \sqrt{p^2 + (m+S)^2} + V$)

[JI. et. al. 2205.06378]

🔹 Fermilab

19 / 31

[Phys. Rev. C. 80, 034605]

Dark Neutrino

Key Notes:

- Handles both Dirac and Majorana fermions
- Results are flux-averaged over the MiniBooNE / MicroBooNE neutrino flux
- Generates full 2 → 4 body phase space with complete angular dependence included (Neglecting spin correlations limits you to only the Majorana case)

Parameters:

- $m_{N'} = 420 \text{ MeV}$
- $m_{Z'} = 30 \text{ MeV}$
- $\alpha_D = 0.25$

- $\alpha \epsilon^2 = 2 \times 10^{-10}$
- $|U_{42}^{\mu}| = 9 \times 10^{-7}$

Dark Neutrino

21 / 31 🛛 💠 Fermilab

Dark Neutrino

- No cuts applied yet
- Typical opening angle around 5-6 degrees
- MiniBooNE needs separation of about 10 degrees to distinguish 1 or 2 electrons

- Need to include background to compare to MiniBooNE data
- Simulate possible MicroBooNE limits

MicroBooNE Simulation

Image generated by the MicroBooNE collaboration using Achilles

- Working on implementing into MicroBooNE Pipeline
- Developing interface to LArSoft

Tau Polarization

- u_{τ} least understood particle (only detected a total of 14 events have been positively identified)
- DUNE ν_{τ} sample will be most important given reconstruction, statistics, and background rejection
- Need to separate NC background from $\nu_{ au}$ CC interactions [2007.00015]
- Key is to understand angular distribution of decay products
- Requires properly handling the au polarization [1906.05656] [2202.07539]

Tau Decay to Pion Angular Distributions

Analytical calculation from: [2202.07539] only for $\nu_{ au}{}^{16}O$ o au X, au o $\pi \nu_{ au}$

25 / 31 🛛 😤 Fermilab

Taus in Achilles

Decay mode	Branching ratio	
Leptonic	35.2%	
$e^-\bar{\nu}_e\nu_{\tau}$	17.8%	
$\mu^- ar{ u}_\mu u_ au$	17.4%	
Hadronic	64.8%	
$\pi^-\pi^0 u_ au$	25.5%	
$\pi^- u_{ au}$	10.8%	
$\pi^-\pi^0\pi^0 u_ au$	9.3%	
$\pi^-\pi^-\pi^+ u_ au$	9.0%	
$\pi^-\pi^-\pi^+\pi^0 u_ au$	4.5%	
other	5.7%	
[2007.00015]		

- Interface Achilles with Sherpa
- Provides spin correlated decays following [hep-ph/0110108]
- Enables the ability to have all possible decay modes
- Sherpa interface provides ability to include QED showers

Taus in Achilles: One-body

J. Isaacson

Taus in Achilles

J. Isaacson

28 / 31 🛛 🛟 Fermilab

Taus in Achilles

Geometry Driver

- Work done in collaboration with SIST summer student Santanu Antu
- Able to parse GDML files
- Propagate neutrinos through detector geometry
- Future Steps:
 - Finalize interface to flux driver and cross section codes
 - Keep track of number of protons on target
 - Interface with Achilles

Conclusions

Current Status:

- Achilles aims to be a modular theory driven generator to address these needs
- BSM important for the current and next generation neutrino experiments
- Robust BSM program requires automating theory calculations
- Properly handling spin is crucial in analyses
- Fully polarized tau decays for all channels now available

Future Steps:

- Implement QED showers to handle radiative corrections
- Interface with LArSoft
- Improve BSM user interface and study more models (If you have a model and want to investigate it, come talk with Pedro or myself)

Achilles code can be found at: https://github.com/AchillesGen/Achilles

Universal FeynRules Output (UFO)

Example QED ($e^+e^-\gamma$ Vertex):

- Python output files
- Contains model-independent files and model-dependent files
- Contains all information to calculate any tree level matrix element
- Has parameter file to adjust model parameters to scan allowed regions

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} \left(i D^{\mu} \gamma_{\mu} - m \right) \psi$$

[arXiv:1108.2040]

Universal FeynRules Output (UFO) Example for photon-electron vertex

```
e_minus_ = Particle(pdg_code=11, name='e-', antiname='e+',
                      spin=2, color=1, mass=Param.ZERO,
                      width=Param.ZERO, texname='e-',
                      antitexname='e+', charge=-1,
                      GhostNumber=0, LeptonNumber=1,
                      Y=0)
V_77 = Vertex(name='V_77')
              particles=[ P.e_plus_, P.e_minus_, P.a ],
              color=[ '1' ], lorentz=[ L.FFV1 ],
              couplings = \{(0,0): C, GC_3\})
FFV1 = Lorentz(name='FFV1', spins=[ 2, 2, 3 ],
               structure = 'Gamma(3,2,1)')
GC_3 = Coupling(name='GC_3', value='-(ee*complex(0,1))',
                order={'OED':1})
```

Tree Level Matrix Element Generators

- ALPGEN [arXiv:hep-ph/0206293]
- AMEGIC [arXiv:hep-ph/0109036]
- COMIX [arXiv:0808.3674]
- CALCHEP [arXiv:1207.6082]
- HERWIG [arXiv:0803.0883]
- MadGraph

[arXiv:1405.0301]

• WHIZARD [arXiv:0708.4233]

• etc.

[arXiv:1702.05725]

Tree Level Matrix Element Generators

- ALPGEN [arXiv:hep-ph/0206293]
- AMEGIC [arXiv:hep-ph/0109036]
- COMIX [arXiv:0808.3674]
- CALCHEP [arXiv:1207.6082]
- HERWIG [arXiv:0803.0883]
- MadGraph

[arXiv:1405.0301]

• WHIZARD [arXiv:0708.4233]

• etc.

[arXiv:1702.05725]

Multi-channel Integration

- Both diagrams contribute to cross section
- They have different pole structures
- Need method to sample these structures efficiently (i.e. $|A_1 + A_2|^2$)

Multi-channel Integration and VEGAS

Multi-channel Integration

- Generate PS efficiently for $|\mathcal{A}_1|^2$ or $|\mathcal{A}_2|^2$
- Do not know how to efficiently sample $2Re(\mathcal{A}_1\mathcal{A}_2^\dagger)$
- Define channels: C_1 and C_2
- Generate events according to distributions g_i for channel i

$$\int d\vec{x} f(\vec{x}) = \sum_{i} \alpha_{i} \int d\vec{x} g_{i}(\vec{x}) \frac{f(\vec{x})}{g_{i}(\vec{x})}$$

• Optimize α_i to minimize variance

VEGAS

- Adaptive importance sampling
- Use this to get interference terms more accurately

Phase space can be decomposed as:

$$\mathrm{d}\Phi_n(a,b;1,\ldots,n) = \mathrm{d}\Phi_{n-m+1}(a,b;m+1,\ldots,n)\frac{\mathrm{d}s_\pi}{2\pi}\mathrm{d}\Phi_m(\pi;1,\ldots,m)$$

Iterate until only $1 \rightarrow 2$ phase spaces remain. Basic building blocks:

$$S_{\pi}^{\rho,\pi\setminus\rho} = \frac{\lambda(s_{\pi}, s_{\rho}, s_{\pi\setminus\rho})}{16\pi^2 2 s_{\pi}} \operatorname{d}\cos\theta_{\rho} \operatorname{d}\phi_{\rho}$$
$$T_{\alpha,b}^{\pi,\overline{\alpha}b\overline{n}} = \frac{\lambda(s_{\alpha b}, s_{\pi}, s_{\overline{\alpha}b\overline{n}})}{16\pi^2 2 s_{\alpha b}} \operatorname{d}\cos\theta_{\pi} \operatorname{d}\phi_{\pi}$$

Momentum conservation: $(2\pi)^4 d^4 p_{\overline{\alpha b}} \delta^{(4)}(p_{\alpha} + p_b - p_{\overline{\alpha b}})$

Results

Processes Considered:

- Electron-Carbon Scattering
- Neutrino-Carbon Scattering
- Dirac/Majorana Dark neutrino [1807.09877]

Experimental Setup:

- Target Nucleus: Carbon (Argon for Dark Neutrino)
- Electron: 961 MeV and 1299 MeV
- Neutrino: 1000 MeV
- Validating beam fluxes

NOTE: All processes are fully differential

Parameters:

- Only quasielastic scattering (coherent for Dark Neutrino) is included and no FSI
- EM Form Factors: Kelly [PRC 70, 068202 (2004)]
- Coherent Form Factor: Lovato [1305.6959]
- Axial Form Factor:
 - Dipole
 - $M_A = 1.0 \text{ GeV}$
 - $g_A = 1.2694$
- $\alpha = 1/137$
- $G_F = 1.16637 \times 10^{-5}$
- $M_Z = 91.1876 \text{ GeV}$

Electron Scattering

Observable: Double differential cross section with respect to outgoing electron angle and energy transfer from electron to nuclear system ($\omega = E_{in}^e - E_{out}^e$)

Neutrino Total Cross Section

Observable: Total neutrino-Carbon cross section versus neutrino energy

Observable: Double differential cross section with respect to outgoing electron angle and energy transfer from neutrino to nuclear system ($\omega = E_{\nu} - E_e$)

Neutrino Tridents

11 / 12

J. Isaacson

