The Impact of Neutrino-Nucleus Interaction Modeling on New Physics Searches

Benchmark: Precision Goals for DUNE

Oscillation probabilities at DUNE for projected 1- σ precision

Benchmark: New Physics Searches

ALP @ DUNE

HNL @ T2K

v-Nucleus Cross Sections In A Nutshell

v-Nucleon Cross Sections In A Nutshell

 ν beam energy: 0.5 GeV – 5 GeV

Uncertainty Assessment: Generators vs. v Data

Shirley Li (Fermilab)

si-

Uncertainty Assessment: Generators vs. e-p Data

e

Same primary vertex models, only vector couplings

Same final-state interactions / nucleon distributions

Mismodeling at ~ 50-80%

Shirley Li (Fermilab)

15- 31-

the second second

How Are Cross Section Uncertainties Dealt with?

One needs to take *tuning* into account for cross section phenomenological studies

\$1-

10/19

Each experiment has their own tuneMost experimental tunings are not public

The Example We Follow: NOvA Tuning Procedure

NOvA 2020 2006.08727

Step 1: "Fix" default GENIE (v2.12.2)

1) Adjust *m*_A from 0.99 to 1.04 GeV Reanalysis of *v*-deuterium data (Meyer et al., 16)

2) Modify the momentum distributions of the initial nucleons for QE MINERvA study (Gran, 17)

3) Lower ν (and not $\overline{\nu}$) non-resonance pion by 57% Reanalysis of bubble chamber data (<u>Rodrigues et al., 16</u>)

4) Suppress resonance production low-Q² region Motivated by MiniBooNE, MINOS, T2K, MINERvA

Shirley Li (Fermilab)

- 347-

The Example We Follow: NOvA Tuning Procedure

NOvA 2020 2006.08727

The main step: MEC tune

Large changes to MEC cross sections Added many unphysical degrees of freedom

Case Study 1: Looking for Sterile Neutrinos

Coyle, SL, Machado, 22

Experimental signature

Sterile Neutrino Tune

Coyle, SL, Machado, 22

Spectra before and after tune

Wiggles do not get washed out,

but can be mimicked by mis-modeling

14/19

Sterile Neutrino Results

Coyle, SL, Machado, 22

0.30 0.30 Input parameters Input parameters × × 2σ , GENIE (truth) 2σ , GENIE (truth) 0.25 0.25 2σ , GENIE (tuned) 2σ , GENIE (tuned) 2σ , NuWro (untuned) 2σ , NuWro (untuned) 2σ , NuWro (tuned) 2σ , NuWro (tuned) 0.20 0.20 $\sin^2 2\theta_{\mu\mu}$ $\sin^2 2\theta_{\mu\mu}$ 11-0.15 0.15 0.10 0.10 × × 0.05 0.05 $\Delta m^2_{41}=2.0~{\rm eV^2}$ $\Delta m^2_{41} = 5.0 \, \mathrm{eV}^2$ 0.00+3.5 0.00 $5.0 \\ \Delta m_{41}^2 \, [eV^2]$ 3.0 2.5 2.0 4.0 4.5 5.5 6.0 6.5 0.5 1.0 1.5 0.0 $\Delta m_{41}^2 \,[\mathrm{eV}^2]$

Sensitivity regions

Tuning does not entirely fix cross section mis-modeling Shirley Li (Fermilab)

Case Study 2: Looking for Neutrinophilic Scalar

Coyle, SL, Machado, 22

The model

To Cut Or Not To Cut

Coyle, SL, Machado, 22

Not cut: background >> signal Cut: background mis-modeling >> signal

Neutrinophilic Scalar Results

Coyle, SL, Machado, 22

New physics likely lives in a corner of phase space

Even worse cross section uncertainties than integrated over entire phase space

Conclusions

- 1. No complete theoretical framework available; difficult to assess uncertainties
- 2. Near detector tuning is crucial and has to be taken into account for new physics searches
- 3. Complicated interplay with experimental procedures