Measuring lepton number violation at colliders

Jan Hajer

Centro de Física Teórica de Partículas, Instituto Superior Técnico, Universidade de Lisboa

Searching for long-lived particles at the LHC and beyond: Thirteenth workshop of the LLP Community

Standard Model neutrinos

Simplest benchmark model candidates

Inconsistency between both models

Predicted decay width proportional to number of Majorana DOFs.

Seesaw model regimes

Dirac mass Neutrino mass matrix from two sterile neutrinos $M_{\nu} = \frac{\boldsymbol{m}_{D}^{(1)} \otimes \boldsymbol{m}_{D}^{(1)}}{m_{U}^{(1)}} + \frac{\boldsymbol{m}_{D}^{(2)} \otimes \boldsymbol{m}_{D}^{(2)}}{m_{U}^{(2)}}$ $\mathcal{L}_D = -m_{D\alpha}\bar{\nu}_{\alpha}N + \text{h.c.}, \quad \boldsymbol{m}_D = v\boldsymbol{y}$ Majorana mass Viable seesaw models $\mathcal{L}_M = -\frac{1}{2}m_M\overline{N}N^c + \text{h.c.}$ High scale Coupling strength is determined by $m_M \approx$ $\boldsymbol{\theta} = \boldsymbol{m}_D / m_M$ m_{GUT} Majorana mass introduces Lepton number violation (LNV) collider testable Majorana mass vanishes if $y \ll 1 > m_M \ll m_{GUT} \not \perp \ll 1$ lepton-number L is conserved Low scale Small coupling Symmetry protected Neutrino oscillation pattern requires Neutrino masses are small for at least two massive neutrinos large m_M (GUT scale seesaw) small y (Naive seesaw line) symmetry protected cancellation

Are HNLs Majorana or Dirac Fermions?

Particle content of benchmark model candidates

Number of Majorana degrees of freedom (DOFs)

	DOF	Particles	Properties		
	1	Majorana	One massive light neutrino / Γ wrong	4	
2 p		Dirac pseudo-Dirac 2 Majorana	No massive light neutrino Minimal linear seesaw / pSPSS Light neutrinos too heavy	4 ~ 4	
	3	pseudo-Dirac + Majorana	<i>v</i>MSM (Dark Matter)Majorana active (no Dark Matter)	\checkmark	
	4	2 pseudo-Dirac	Minimal inverse seesaw	\checkmark	
	5	2 pseudo-Dirac + Majorana	····		
	6	3 pseudo-Dirac			
Good	benchn	nark model	Minimal parameter set for single ps	eudo-Dira	
Reproduces neutrino mass scaleCaptures dominant collider effectsMinimal possible number of parameters			 Mass m Coupling vector θ Mass splitting Δm 		

The symmetry protected seesaw scenario (SPSS) is the minimal viable model

Heavy neutrino-antineutrino oscillations

Oscillations in the Standard Model

Heavy neutrino-antineutrino oscillations

Software implementation of the phenomenological SPSS

[pSPSS; 2210.10738

Mass splitting

 $m_{\scriptscriptstyle 4/5} = m_{\mathcal{M}} ig(1 + |oldsymbol{ heta}|^2/2 ig) \mp \Delta m/2$

Phenomenological SPSS (pSPSS) adds

 Δm Heavy neutrino-antineutrino oscillations λ Decoherence damping

FEYNRULES model file

```
Pseudo-Dirac HNLs in the pSPSS
```

Available online

feynrules.irmp.ucl.ac.be/wiki/pSPSS

Parameter

BL	OCK PSPSS #	
1	1.000000e+02	# mmaj
2	1.000000e-12	# deltam
3	0.000000e+00	<pre># theta1</pre>
4	1.000000e-03	<pre># theta2</pre>
5	0.000000e+00	# theta3
6	0.000000e+00	<pre># damping</pre>

Oscillations implemented in MADGRAPH

```
mass_splitting = param_card.get_value('PSPSS', 2)
damping = param card.get value('PSPSS', 6)
for event in lhe:
   leptonnumber = o
   write event = True
   for particle in event:
       if particle.status == 1:
           if particle.pid in [11, 13, 15]:
              leptonnumber += 1
           elif particle.pid in [-11, -13, -15]:
              leptonnumber -= 1
   for particle in event:
       id = particle.pid
       width = param_card['decay'].get((abs(id),)).value
       if width:
          if id in [8000011, 8000012]:
              tauo = random.expovariate(width / cst)
              if o.5 * (1 + math.exp(-damping)*math.cos(
                    mass_splitting * tauo / cst)) >= random.
                    random():
                  write event = (leptonnumber == o)
              else:
                  write event = (leptonnumber != o)
              vtim = tauo * c
          else:
              vtim = c * random.expovariate(width / cst)
           if vtim > threshold:
              particle.vtim = vtim
   # write this modify event
   if write_event:
       output.write(str(event))
output.write('</LesHouchesEvents>\n')
output.close()
```

Monte Carlo Simulation

Impact of a d_0 cut and decoherence on R_{II}

great observable - terrible benchmark model parameter

Heavy neutrino-antineutrino oscillations at the LHC

Detector simulation results at the LHC

[2212.00562]

Results

- Large parts of accessible parameter space excluded by LHC
- HL-LHC can measure oscillations in some BMs with $5\,\sigma$

Detector simulation results

HL-LHC

discovery possible

- Large mass splitting hard to resolve
- Lorentz factor reconstruction crucial

Future work

- Properly simulate secondary vertex smearing
- Improve Lorentz factor reconstruction
- Simulate signals at other detectors and colliders

Reinterpretation of HNL searches as exclusion on low-scale seesaw models

- Low-scale seesaw models predict pseudo-Dirac HNLs
- Pseudo-Dirac HNLs oscillate between LNC and LNV decays
- The symmetry protected seesaw scenario captures the relevant physics in a simple model
- We have implemented and published the necessary tools to simulate these oscillations
- Displaced HNL oscillations are resolvable at the HL-LHC
- R_{II} is an oscillation effect and depends on e.g. d_0 cuts and decoherence

References

- S. Antusch, J. Hajer, and J. Rosskopp (Oct. 2022a). 'Simulating lepton number violation induced by heavy neutrino-antineutrino oscillations at colliders'. arXiv: 2210.10738 [hep-ph]
- J. Hajer and J. Rosskopp (Oct. 2022). 'pSPSS: Phenomenological symmetry protected seesaw scenario'. FeynRules model file. DOI: 10.5281/zenodo.7268362. GitHub: heavy-neutral-leptons/pSPSS. URL: feynrules.irmp.ucl.ac.be/wiki/pSPSS
- S. Antusch, J. Hajer, and J. Rosskopp (2023). 'Decoherence effects on lepton number violation from heavy neutrino-antineutrino oscillations'. in preparation
- S. Antusch, J. Hajer, and J. Rosskopp (Dec. 2022b). 'Beyond lepton number violation at the HL-LHC: Resolving heavy neutrino-antineutrino oscillations'. arXiv: 2212.00562 [hep-ph]

Technical details

Single pseudo-Dirac symmetry protected seesaw scenario (SPSS) [2210.10738]

Exact limit	Small breaking terms	Small breaking terms $v_{y_2} pprox \mu_M pprox \mu_M' \ll m_M'$		
$\mathcal{L}_{\rm SPSS}^{L} = -m_M \overline{N}_1 N_2^c - y_1 \widetilde{H}^{\dagger} \overline{\ell} N$	$\mathcal{L}_{\text{SPSS}}^{c} = -y_2 \widetilde{H}^{\dagger} \overline{\ell} N_2^{c}$	$\mathcal{L}_{\text{SPSS}}^{\not\!$		
Lepton number-like symmetry generalises accidental SM lep-	One simple choice of charges $\frac{\ell}{N_1 N_2}$	Other new fields further terms in Lagrangian		
ton number L	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Neutrino mass matrix M_n	Basis	Dirac masses		
contains seesaw information	$n = (\mu n_{\perp} n_{\perp})$	$\boldsymbol{m}_{\mathrm{D}} = \boldsymbol{y}_{1}\boldsymbol{v}, \ \boldsymbol{\mu}_{\mathrm{D}} = \boldsymbol{y}_{2}\boldsymbol{v}$		
	$n = (\nu, n_4, n_5)$			
Symmetric limit	Mild symmetry breaking	Large symmetry breaking		
Symmetric limit $M_n^L = \begin{pmatrix} 0 & \boldsymbol{m}_D & 0 \\ \boldsymbol{m}_D^T & 0 & \boldsymbol{m}_M \\ 0 & \boldsymbol{m}_M & 0 \end{pmatrix}$	Mild symmetry breaking $M_n^{\not L \ll 1} = \begin{pmatrix} 0 & \boldsymbol{m}_D & \boldsymbol{\mu}_D \\ \boldsymbol{m}_D^{T} & \boldsymbol{\mu}_M' & \boldsymbol{m}_M \\ \boldsymbol{\mu}_D^{T} & \boldsymbol{m}_M & \boldsymbol{\mu}_M \end{pmatrix}$	Large symmetry breaking $M_n^{\not L \gg 0} = \begin{pmatrix} 0 & m_D & \widehat{m}_D \\ m_D^T & \widehat{m}'_M & m_M \\ \widehat{m}_D^T & m_M & \widehat{m}_M \end{pmatrix}$		

Special cases captured by the symmetry protected seesaw

[2210.10738]

	Linear seesaw μ_D	Inverse	e seesaw μ_M	Seesaw independent μ_M'	
$M_n =$	$\begin{pmatrix} 0 & \boldsymbol{m}_D & \boldsymbol{\mu}_D \\ \boldsymbol{m}_D^{T} & 0 & \boldsymbol{m}_M \\ \boldsymbol{\mu}_D^{T} & \boldsymbol{m}_M & 0 \end{pmatrix}$		$ \begin{pmatrix} \mathbf{m}_{D} & 0 \\ \mathbf{m}_{D}^{T} & 0 & \mathbf{m}_{M} \\ 0 & \mathbf{m}_{M} & \boldsymbol{\mu}_{M} \end{pmatrix} $	$\begin{pmatrix} 0 & \boldsymbol{m}_D & 0 \\ \boldsymbol{m}_D^T & \boldsymbol{\mu}_M' & \boldsymbol{m}_M \\ 0 & \boldsymbol{m}_M & 0 \end{pmatrix}$	
$M_{ u} =$	$\boldsymbol{\mu}_D \otimes \boldsymbol{\theta}$	$\mu_M oldsymbol{ heta} \otimes oldsymbol{ heta}$		0 (at tree level)	
$\Delta m =$	$\Delta m_{ u}$	$m_ u oldsymbol{ heta} ^{-2}$		$ \mu'_M $	
Benchmark models			10^8 Inverse seesaw Linear seesaw 10^{-8}		
Seesaw	Hierarchy BM		10^{5} = 5 · 10 ⁻² eV Normal		
Linear	$\begin{array}{ll} \mbox{Normal} & \Delta m_{\nu} = 42.3 \mbox{ meV} \\ \mbox{Inverted} & \Delta m_{\nu} = 748 \mbox{ \mueV} \\ \\ & m_{\nu} = 0.5 \mbox{ meV} \\ & m_{\nu} = 5 \mbox{ meV} \\ & m_{\nu} = 50 \mbox{ meV} \end{array}$		$3 10^{-10}$	-4 eV -10^{-2} F	
Inverse			10 ⁻¹		
Generic see	esaw		10^{-4} 10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁵	$^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{4}$	
All small pa	arameter μ are nonzero			θ ²	

Impact of d_0 cut on $N = N_{LNC} + N_{LNV}$

