

Testing Neutrino Dipole Portal by LLP Detectors at the LHC

Wei Liu

Nanjing University of Science and Technology Arxiv: 2302.02081 Work in collaboration with Yu Zhang thirteenth workshop of the LLP Community

Neutrino Mass

Figure from Hitoshi Murayama

• Existence of the neutrino masses, is beyond the SM!

Heavy Neutral Lepton

- Introduce right-handed heavy neutrinos (HNL) to explain the neutrino masses
- Various models

A EFT Model: Dipole portal

• Collider, beam dump, neutrino scattering, Astrophysical...

4

A EFT Model: Dipole portal

S

 $\mathcal{L} \supset \bar{L}(d_{\mathcal{W}}\mathcal{W}^{a}_{\mu\nu}\tau^{a} + d_{B}B_{\mu\nu})\tilde{H}\sigma_{\mu\nu}N_{D} + \text{H.c.}$

$$\mathcal{L} \supset d_{W}(\bar{\ell}_{L}W_{\mu\nu}^{-}\sigma^{\mu\nu}N_{D}) + \bar{\nu}_{L}[d_{\gamma}F_{\mu\nu} - d_{Z}Z_{\mu\nu}]\sigma^{\mu\nu}N_{D} + \text{H.c.}$$

$$\sim 1 \text{ GeV}$$

$$\mathcal{L} \supset d_{k}\bar{\nu}_{L}^{k}\sigma_{\mu\nu}F^{\mu\nu}N + \text{H.c.},$$

$$d_{\gamma} = \frac{v}{\sqrt{2}} \left(d_B \cos \theta_w + \frac{d_W}{2} \sin \theta_w \right)$$
$$d_Z = \frac{v}{\sqrt{2}} \left(\frac{d_W}{2} \cos \theta_w - d_B \sin \theta_w \right)$$
$$d_W = \frac{v}{\sqrt{2}} \frac{d_W}{2} \sqrt{2}.$$

 $\{m_N, d_W, d_B\}$

$$d_{\mathcal{W}} = a \times d_{B}$$

$$d_{Z} = \frac{d_{\gamma}(a\cos\theta_{w} - 2\sin\theta_{w})}{2\cos\theta_{w} + a\sin\theta_{w}}$$

$$d_{W} = \frac{\sqrt{2}ad_{\gamma}}{2\cos\theta_{w} + a\sin\theta_{w}}$$

$$\{m_{N}, d_{\gamma}, a\}$$

• Dipole portal via Effective Field Theory

Origin of Neutrino Mass

Assumption I

• The HNLs should be Dirac, othwise the Dipole is suppressed by the neutrino mass

Assumption II

- We assume the *NLH* coupling is small, thus dipole portal is dominant
- The neutrino masses can still be explained by the inverse seesaw, whatever the *NLH* coupling is

Production at the LHC

- We focus mainly via the on-shell decays of W/Z,
- the EFT should be valid with $\Lambda > M_{W,Z}$

• The cross section can be high, and depend on $a = d_B/d_W$

Scenarios

Scenario	Assumptions	Relations	
A	$d_{\mathcal{W}}=0$	$d_Z = -d_\gamma \tan \theta_w; d_W = 0$	
В	$d_{\mathcal{W}} = 2 \tan \theta_w \times d_B$	$d_Z = 0, d_W = \sqrt{2} d_\gamma \sin \theta_w$	
С	$d_{\mathcal{W}} = -3 \times d_B$	$d_Z \approx 11.250 \times d_\gamma, d_W \approx 13.258 \times d_\gamma$	
D	$d_{\mathcal{W}} = -3.73 \times d_B$	$d_Z \approx 139.55 \times d_\gamma; d_W \approx 173.52 \times d_\gamma$	

- We select four scenarios according to different $a = d_B/d_W$
- The production cross section is different for each scenarios

Decay of the HNLs

- The RHNs dominantly decay into $N \rightarrow \gamma \nu$, mono photon plus MET
- The current limits has already pointed towards HNLs as LLPs.

LLP detection at the LHC

- mono photon signal can not be detected at MATHUSLA
- Can be detected at the FASER, if the photon is energetic
- FACET should be similar
- MoEDAL-MAPP can detect photon, but lacks literature

LLP Selection at the LHC

Detectors	L_x [m]	L_y [m]	L_{xy} [m]	L_z [m]	Luminosity $[fb^{-1}]$
FASER-2	—	—	[0,1]	[475, 480]	3000
MAPP-2	[3,6]	[-2,1]	_	[48, 61]	300
FACET	-	_	[0.18, 0.5]	[101, 119]	3000

- The direction, solid angle coverage, length, distance are important
- FASER are at the very forward direction
- FACET is closer to the transerve direction
- MAPP-2 is similar to the LHCb

12

Results

- Scenario A
- Left is the flavor universal coupling case, right for d_{τ} dominance
- The current limits from neutrino scattering are strong for e, μ flavor
- Less τ limits, since hard to get $\boldsymbol{\nu}_{\tau}$ source
- Better sensitivity for d_{τ} with LLP searches!
- The background of FACET and MAPP is not modelled very well
- We show N_S =3, 10 for FASER-2
- N_S =3, 1000 for FACET and MAPP

Results

- Scenario D
- Left is the flavor universal coupling case, right for d_{τ} dominance
- The production is enhanced by large d_W and d_Z
- FACET and MAPP are better, closer to the transverse direction
- The existing limits are scaled
- The LLP searches can reach 10^{-7}

Lepton Colliders

- There are several existing and proposal for lepton colliders
- BESIII, Belle II, STCF, CEPC...

Lepton Colliders

- The production cross section mainly from t channel W
- Z resonance for light HNL

Re

16

Results

- Signals are **prompt mono photon**
- CEPC have 2 magnitude better sensitivity than the LEP
- BES-III, STCF and Belle-II are comparative to the neutrino scattering
- YZ, WL, Phys.Rev.D 107 (2023) 9, 095031

Conclusion

- The more general dipole couplings to HNL which respect the full gauge symmetries of the SM are considering.
- We present the constraints on various electron colliders and LHC by Long-lived Particle Detectors.
- The constraints on active-sterile neutrino transition magnetic moments dependent on the scenarios at high energy colliders.
- The current constraints basically do not dependent on the ratio a, since the typical scattering energies are **far less than the electroweak scale**.