Exploiting exotic LHC datasets for long-lived new particle searches [2211.02171

Jan Hajer

Centro de Física Teórica de Partículas, Instituto Superior Técnico, Universidade de Lisboa

Searching for long-lived particles at the LHC and beyond: Thirteenth workshop of the LLP Community

Breaking the conventional wisdom

New particles are heavy!	Dedicated detectors [See excellent dedicated talks]		
Otherwise we would have found them already \rightarrow Highest possible collision energy	FASER, CODEX-b, milliQan, MATHUSLA, ANUBIS, SHiP, etc.		
\rightarrow High trigger thresholds (to increase S/B)	Dedicated upgrades		
New particles are infrequently produced!	e.g. timing layer in CMS		
\rightarrow Largest possible luminosity	Dedicated triggers		
\rightarrow Very large plleup \rightarrow Even higher trigger thresholds	e.g. based on displacement		
Not always true [See excellent dedicated talks]	Special datasets from ATLAS and CMS		
 Models with light particles that escaped de- 	Scouting		
tection	 Parking Heavy ion collisions 		
lived particles	Low-pileup		
 These models gain popularity as the LHC 			
limits on traditional BSIVI models get tighter l			

Goal and strategy of this study

Benchmark model	Question		
Light and long-lived neutral resonance	Which dataset is most promising?		
decaying into 2 muons	Purpose		
Light	Provide more resources to the right channel		
 Muons have soft spectrum Killed by high trigger p_T thresholds 	Simplification		
Long-lived	 Absolute performance not crucial Which significance expected after n fb⁻¹? 		
 Large S/B using muon displacement 	 Relative performance relevant 		
 Degradation by pileup 	Which dataset performs better?		
	Some shortcuts do not affect the answer		
	Detector simulation		
	Using DELPHESApplying simplistic analysis/selection		

Datasets

Scouting

Idea	Run 2		
Fraction of bandwidth given to data stream with reduced event content	96.6 fb ^{-1} collected in 2017 and 2018 using a dimuon triggers		
Size reduction (2011 example)	Run 3		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	 Larger bandwidth allocated Assumption: Continuous running → Threefold increase 		
$\sim 7.5 \mathrm{MB/s} \qquad \sim 1.5 \mathrm{kB} \cdot \sim 5 \mathrm{kHz}$	Modeled by		
Information loss	Degrading muon resolutionLowering trigger thresholds		
No raw data savedNo offline reconstruction			

Parking

Idea

- Storing a fraction of the triggered data without running the prompt reconstruction algorithms
- Exploit the reduced beam intensity towards end of fill
- Event reconstruction delayed post data taking

Run 2

12 M events collected in 2018 with a non-isolated μ trigger motivated by b-physics

Run 3

- Difficult to predict since it depends on future available computing resources
- Assumption: Every year as many events as in 2018 will be parked
- \rightarrow Quadrupled statistics

Simulated using

- Low trigger threshold
- Non-isolated muons

Low-pileup

Heavy ions

Drawbacks

- much shorter running time (1 month per year)
- much smaller instantaneous luminosity (limited by beam disruption)
- smaller collision energy per nucleon

Advantages

- Cross section enhanced by (208)²
- Zero pileup

Run 2 luminosity and energy

 $\mathcal{L}=1.6\cdot 10^{-6}\,\text{fb}^{-1}\,$ at $\,5.02\,\text{TeV/nucleon}$

Run 3

- Confirmed plan to accumulate $\mathcal{L}=9.6\cdot10^{-6}\,\text{fb}^{-1}$
- Energy undecided, we assume 5.5 TeV/nucleon

Great for

[1812.07688; 2203.05939]

Monopoles, Axion like particles via photon interactions

Summary of the assumptions for the simulation

Trigger thresholds and luminosities

Dataset	$p_T^{\min}/{ m GeV}$		$\mathcal{L}_{int}/fb^{-1}$		MC approximation
	muon	dimuon	Run 2	Run 3	
Standard pp	24	17	140	280	
Scouting	-	3	96.6	289.8	Pileup of 35 and 70
Parking	12	_	48.8	195.2	
Low-pileup	17	8	0.2	0.5	Zero pileup
Heavy ion	-	3	$1.6 imes10^{-6}$	$9.6 imes10^{-6}$	Only PbPb

То	prevent	artificially disfavouring one dataset
we	assume	three different trigger scenarios

Trigger scenarios			
	Muon	Hybrid	Dimuon
p_T threshold	Single muon		Dimuon
Displaced muons	1		2

Sensitivity to benchmark model

Benchmark model

Axion like particle interaction

$$\mathcal{L}_{a} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_{a} a^{2} - c_{\tilde{G}} \frac{a}{f_{a}} G_{\mu\nu} \widetilde{G}^{\mu\nu} - \mathrm{i} c_{a\phi} \frac{a}{f_{a}} \sum_{f} m_{f} (\bar{f}_{L} f_{R} - \mathrm{h.c.}) + \dots,$$

Invariant mass distribution

Displacement

Results

HNLs from mesons in heavy ions

1810.09400; 1905.09828

15

- Scouting and parking are competitive with standard data for this category of signal model
- They might outcompete standard data if significantly larger resources are allocated
- PbPb and low-pileup are considerably less competitive
- Other signal models (monopoles, ALP interacting with γ , ...) lead to different conclusions

References

- H. El Faham, A. Giammanco, and J. Hajer (2022). 'Exploiting exotic LHC datasets for long-lived new particle searches'. In: JHEP 12, p. 123. DOI: 10.1007/JHEP12(2022) 123. arXiv: 2211.02171 [hep-ph]
- CMS. 'Recording and reconstructing 10 billion unbiased b hadron decays in CMS'. №: CMS DP-2019/043
- CMS. 'Measurement of the inclusive $t\bar{t}$ production cross section in proton-proton collisions at $\sqrt{s} = 5.02$ TeV'. In: JHEP 04, p. 144. DOI: 10.1007/JHEP04(2022)144. arXiv: 2112.09114 [hep-ex]. No: CMS-TOP-20-004 and CERN-EP-2021-244
- R. Bruce et al. (2020). 'New physics searches with heavy-ion collisions at the CERN Large Hadron Collider'. In: J. Phys. G 47.6, p. 60501. DOI: 10.1088/1361-6471/ab7ff7. arXiv: 1812.07688 [hep-ph]
- D. d'Enterria et al. (2023). 'Opportunities for new physics searches with heavy ions at colliders'. In: *J. Phys. G* 50.5, p. 50501. DOI: 10.1088/1361-6471/acc197. arXiv: 2203.05939 [hep-ph]
- M. Drewes, A. Giammanco, J. Hajer, M. Lucente, and O. Mattelaer (2020a). 'Searching for New Long Lived Particles in Heavy Ion Collisions at the LHC'. In: *Phys. Rev. Lett.* 124.8, p. 81801. DOI: 10.1103/PhysRevLett.124.081801. arXiv: 1810.09400 [hep-ph]. №: CP3-18-60
- M. Drewes, A. Giammanco, J. Hajer, and M. Lucente (2020b). 'New long-lived particle searches in heavy-ion collisions at the LHC'. In: *Phys. Rev. D* 101.5, p. 55002. DOI: 10.1103/ PhysRevD.101.055002. arXiv: 1905.09828 [hep-ph]. №: CP3-19-26

Details

Run 2

Run 3

