CERI

Status of the CODEX-b(eta) experiment

Titus Mombächer (CERN)

on behalf of the CODEX-b team LLP13 workshop

21.06.2023

heavier $(\gtrsim 10 \, \text{GeV})$ Why shielded new experiment? LHC coverage (ATLAS, CMS, LHCb) Transverse m_{LLP} (CODEX-b, USLA, AL3X, Dark sectors interaction with the Standard lighter ($\lesssim 10 \,\mathrm{MeV}$) Forward (FASER, SHIP, Model (SM) represented via mediators/portals Feebly interacting \rightarrow long-lived ←near $\sim m$ Only LHC can produce potential LLP's from heavier ($\gtrsim 10 \, \text{GeV}$) LHC coverage (ATLAS, CMS, LHCb) heavy SM particles TLLP Missing out on zero-background transverse Transverse $10 \,\mathrm{MeV})$ Forward (CODEX-b, detector (FASER, SHiP, MATHUSLA, AL3X, ...) lighter (\lesssim NA62, ...)

 \leftarrow lighter $\sim c\bar{c}, b\bar{b}, \tau\bar{\tau}$ h, t

COmpact **D**etector for **EX**otics at LHC**b**

Medium-scale transverse LLP detector

- Proposed ~25m from IP8
- From Run 4
- Cube instrumented with Resistive Plate Chambers (RPC)
 - Well known technology (ATLAS Upgrade system)
 - Medium size low cost
- Zero background experiment
 - Shield + 3.2m concrete wall crucial
- Can integrate into LHCb trigger

LLP13 workshop | Status of CODEX-b

Backgrounds

- Muons (primary/secondary)
- Neutrons, Kaons produced in passive shielding from Muons
- Decay in detector or produce particles from scattering
- $\sim 25\lambda$ shield (conservative) with active veto to veto primary muons
- Expect to go down to ≤ 1 background over $300\,{\rm fb}^{-1}$

T. Mombächer

LLP13 workshop | Status of CODEX-b

4

Detector technology

- RPC's designed for Upgrade 1 of ATLAS Muon system "BIS78"
- Triplet of RPC's, $\mathcal{O}(1 \text{ mm})$ spatial resolution in X-Y; timing resolution $\mathcal{O}(100 \text{ ps})$
- Cost-effective for large-area tracker like CODEX-b
- Well established procedures from ATLAS productions

Physics reach

 $3r[h \rightarrow A'A']$ Many UV complete and minimal benchmarks studied

Two representative examples:

- $h \rightarrow A'A' \rightarrow 2e2e$
- $b \rightarrow sS \rightarrow s\ell\ell$
- Unique reach from CODEX-b wrt existing experiments
- Find many more scenarios in the EOI [arXiv:1911.00481]

 10^{-1}

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-5}

CODEX-beta - a demonstrator

- Small $(2 \times 2 \times 2)$ m³ detector to demonstrate core principles:
 - Demonstrate the ability to reconstruct SM backgrounds and validate simulation
 - Guarantee zero-background, optimise active veto
 - Demonstrate seamless integration into LHCb trigger
 - Demonstrate RPC as suitable baseline tracking technology for CODEX-b
 - Demonstrate suitability of mechanical support for RPC's and scalability for CODEX-b
- Build expertise within collaboration

CODEX-beta design

- > 2 RPC triplets per face, one central layer: 42 RPC's
- Tight space constraints, chambers rolled in with carts

T. Mombächer

CODEX-beta construction

- Funding secured
- Installation plans reviewed by LHCb
- Procurement done/ongoing
- Preparing the RPC production at CERN
 - Front-end boards tested
 - Setting up the assembly site
 - **THANKS!** to ANUBIS and ATLAS for collaboration on RPC's (hardware and expertise)

RPC assembly to commence next month

LLP13 workshop | Status of CODEX-b

CODEX- β Installation Plan

The CODEX-b team

(Dated: April 2023)

67p document in iteration with LHCb

CODEX-beta construction

- Mechanical frame design ready
 - Frame prototype to hold RPC triplets
- Mockup to test transportation to the location
- Ongoing software development:
 - Checked RPC alignment tolerances
 - Setting up full simulation
 - First studies to prepare CODEX-beta analyses

Towards measurements with CODEX-beta

- Crucial to understand and properly simulate background
- Measure fluxes and compare to simulation
 - Exploit decay vertex distribution and opening angles to test energy spectrum, acceptance and path length effects
 - Calibrate background simulation
 - Optimisation of shielding design
- Closure test with $K_{\rm S}^0$ lifetime:
 - Many boosted $K^0_{
 m S}$ produced in UXA wall
 - Fit K^0_S lifetime from vertex and opening angle distribution of $K_{\rm c}^0 \to \pi^+ \pi^-$

11

Detector optimisation

- Study by LBL group [arXiv:2211.08450]
- Fast simulation framework to study
 - Different detector geometries and locations
 - Different tracking configurations
- > Divided CODEX-b geometry into 450 $2 \times 2 \text{ m}^2$ panels
 - Study optimal amount and location with benchmarks $h \rightarrow A'A' \rightarrow 2e2e \text{ and } b \rightarrow sS \rightarrow s2e(4\pi)$
 - Informs detector coverage
 - Can substantially reduce number of panels without significant efficiency drop
- Use the tool for finding best location given cavern constraints

Fast simulation framework to project efficiencies

- Take HepMC simulation as input
- Build detector geometry and tracking faces
- Perform several optimisations to reduce CPU usage:
 - Flip in z
 - Rotation in phi according to detector geometry
 - Sample for long lifetime according to detector displacement
 - Keep track with overall event weight
- Join decay vertex with arbitrary (phase space) decay
- Filter sample according to which events survived in the detector volume
- Add track hits to the particles
- Will become public to be used for reinterpretation!

1st collaboration week!

- CODEX-beta installation
- Physics perspectives
- Input from LHCb on CODEX-b
- Hackathons on Simulation and Reconstruction
- Invited expertise from other (LLP) experiments (LHCb, ANUBIS, SHiP, MATHUSLA, R2E, CMS, ...)
- ... and end with a nice BBQ!

	FRIDAY, 16 JUNE	
09:29 → 09:30	Practical info for Friday Map of rooms for Friday	(
09:30 → 11:15	Summaries Convener: Philip Ilten (University of Cincinnati (US))	222/R-
	09:30 Summary from the physics session Speaker: Carlos Vazquez Sierra (Universidade de Santiago de Compostela (ES)) CODEX-b physics su	C
	09:50 Summary from the hardware session Speaker: Daniel Johnson (University of Birmingham (GB)) P 23-06Jun-16_DJohn	G
	10:10 Summary from the reconstruction session and hackathon Speaker: Louis Henry (EPFL - Ecole Polytechnique Federale Lausanne (CH)) P 20230616_Reconstr	C
	10:30 Summary from the simulation session and hackathon (remote) Speaker: Biplab Dey (Eotvos U.) Lalk.pdf	C
	10:50 Summary from the CODEX-beta review Speaker: Philip Ilten (University of Cincinnati (US)) Iten.pdf	C
12:00 → 15:00	BBQ at P8	

Shapshot hom the week's summary

LLP13 workshop | Status of CODEX-b

14

Summary

- Significant phase space for LLP's cannot be covered without a dedicated shielded transverse detector at the LHC
- CODEX-b will offer excellent physics reach for small cost (total ~10M€) CODEX-beta for Run 3 progressing steadily
 - Ramping up hardware production and software activities
 - RPC assembly to begin next month
 - Investigating first toy data analyses
- Collaboration is growing

More collaborators welcome!

2023

Backup

Comparison to other proposals

T. Mombächer

LLP13 workshop | Status of CODEX-b

[arXiv:1911.00481]

Backgrounds with that scenario

		Particle yields		
BG species	Net $(E_{\rm kin}^{\rm neutral} > 0.4 { m GeV})$	Shield veto rejection	Shield veto rejection	Net yield
		(total)	$(\pm/0 \text{ correlation})$	
γ	0.54 ± 0.12	$(8.06 \pm 0.60) imes 10^4$	$(2.62 \pm 1.03) \times 10^3$	_
n	58.10 ± 4.63	$(4.59 \pm 0.15) imes 10^5$	$(3.44 \pm 0.51) imes 10^4$	
$n \ (> 0.8 \mathrm{GeV})$	2.78 ± 0.25	$(1.03 \pm 0.06) imes 10^5$	$(7.45 \pm 1.92) \times 10^3$	$\lesssim 1$
$ar{n}$ (no cut)	$(3.24\pm 0.72) imes 10^{-3}$	34.40 ± 25.80	$(7.12 \pm 2.19) imes 10^{-2}$	≪ 1
K^0_L	0.49 ± 0.05	$(1.94 \pm 0.74) \times 10^3$	54.40 ± 19.20	$\lesssim 0.1$
K^0_S	$(6.33 \pm 1.39) imes 10^{-3}$	93.90 ± 45.80	0.74 ± 0.19	≪1
$ u + ar{ u}$	$(5.69 \pm 0.00) imes 10^{13}$	$(7.35 \pm 0.12) imes 10^{6}$	$(7.31 \pm 0.11) \times 10^{6}$	
p^{\pm}	$(2.07\pm0.26) imes10^2$	$(9.24 \pm 0.36) imes 10^5$	$(9.24 \pm 0.36) imes 10^5$	-
e^{\pm}	$(4.53 \pm 0.02) \times 10^3$	$(4.38 \pm 0.02) imes 10^7$	$(4.38 \pm 0.02) imes 10^7$	_
π^+	34.70 ± 2.27	$(2.96\pm0.20) imes10^5$	$(2.96 \pm 0.20) imes 10^5$	-
π^{-}	31.40 ± 2.12	$(2.68 \pm 0.19) imes 10^5$	$(2.68 \pm 0.19) \times 10^5$	_
K^+	0.83 ± 0.30	$(3.08\pm1.24) imes10^3$	$(3.08\pm1.24) imes10^3$	-
K^-	0.23 ± 0.12	$(1.12 \pm 0.63) \times 10^3$	$(1.12 \pm 0.63) \times 10^3$	_
μ^+	$(1.04 \pm 0.00) imes 10^{6}$	$(1.04 \pm 0.00) \times 10^{10}$	$(1.04 \pm 0.00) \times 10^{10}$	-
μ^-	$(8.07 \pm 0.01) \times 10^5$	$(8.07 \pm 0.01) \times 10^9$	$(8.07 \pm 0.01) \times 10^9$	_

T. Mombächer

LLP13 workshop | Status of CODEX-b

[arXiv:1911.00481]

Nothing remains

