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Figure 2. 95% CL exclusion regions in the ma– sin ✓ plane for the 2HDM+a benchmark I
scenario (3.3). The dotted red, blue, green and purple lines correspond to the limits following from
the ATLAS searches [33, 34], [35], [43] and [44], respectively. The dashed yellow curves instead
represent the bound that arises from the CMS search [38]. The parameter space between the lines
is disfavoured. See main text for further details.

muon endcap and 137 fb�1 of
p
s = 13TeV data. From the figure it is evident that in

the 2HDM+a benchmark I scenario the existing LHC searches for displaced Higgs decays
to hadronic jets allow to exclude values of sin ✓ between around 10�7 and 10�5 with the
exact bound depending on the mass of the pseudoscalar a. The excluded parameter space
corresponds to proper decay lengths c⌧a in the range from around 59m to 0.08m. Notice
that given the smallness of the h ! aa branching ratio

�
cf. (3.5)

�
, our benchmark I scenario

easily evades the present bounds on the undetected or invisible branching ratios of the
125GeV Higgs [53] that amount to 19% and 9%, respectively. In fact, even a possible
future high-luminosity LHC (HL-LHC) upper limit on the invisible branching ratio of the
SM-like Higgs of BR (h ! invisible) < 2.5% [54] would not be stringent enough to test (3.3)
indirectly. This feature underlines the special role that LLP searches for displaced Higgs
decays can play in testing 2HDM+a models with mixing angles ✓ close to zero.

Let us now turn our attention to the benchmark II scenario (3.8). In this case the
parameters are chosen such that an LLP signal may arise from the prompt decay of the
heavy CP-even Higgs, i.e H ! aa, followed by the displaced decays of the pseudoscalars to
a pair of SM fermions a ! ff̄ or gluons a ! gg. Given our choice of Yukawa sector and
tan�, the a dominantly decays to the heaviest SM fermion, which means that depending on
the precise value of its mass either a ! bb̄ or a ! tt̄ provide the largest rate. To illustrate
these two possibilities we consider in benchmark II the mass combination mH = 600GeV
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Figure 1. Examples of tree-level Feynman diagrams representing pp ! aa production via
gluon-gluon-fusion (ggF) Higgs production (left) and pp ! l

+
l
�
aa production in associated Zh

production (right) in the 2HDM+a model. The possible decay modes of the pseudoscalar a are not
shown. Consult the text for further details.

⌘u = cot�, ⌘d = tan�, ⌘l = tan� and yf =
p
2mf/v with mf the mass of the relevant

SM fermion, v ' 246GeV the Higgs vacuum expectation value (VEV) and ↵s the strong
coupling constant. From the analytic expressions (2.1) and (2.2) it is evident that the
pseudoscalar a can only be long-lived if sin ✓ is sufficiently small, i.e. sin ✓ ! 0, and decays to
DM are strongly suppressed/absent which can be achieved either via decoupling, i.e. y� ! 0,
or by forbidding the process kinematically, i.e. m� > ma/2.

Given the strong suppression of the couplings of the pseudoscalar a to SM fermions in
the limit sin ✓ ! 0, the only possibility to produce a long-lived a is via the decay of heavier
spin-0 state � into a pair of such pseudoscalars. In the case that the scalar potential
is CP conserving the � has to be a CP-even state which implies that in the 2HDM+a

model one can have both decays of the 125GeV Higgs h and the heavy CP-even Higgs H.
The corresponding partial decay widths can be written as

� (� ! aa) =
g
2
�aa

32⇡
m�

s
1� 4m2

a

m
2
�

, (2.4)

with � = h,H. For sin ✓ ' 0 the relevant trilinear couplings are given by [4]

ghaa ' � 2v

mh

�
�P1 cos

2
� + �P2 sin

2
�
�
,

gHaa ' v

mH

sin (2�) (�P1 � �P2) ,

(2.5)

where mh ' 125GeV is the mass of the SM-like Higgs, while �P1 and �P2 are the quartic
couplings that appear in the 2HDM+a scalar potential as follows P 2

�
�P1H

†
1H1+�P2H

†
2H2

�

(see for example [4, 9] for the complete expression of the scalar potential). Here P denotes
the additional pseudoscalar in the weak eigenstate basis which satisfies P ' a for sin ✓ ' 0.

The trilinear couplings entering (2.5) can be constrained phenomenologically. In the
case of ghaa one can require that the partial decay width � (h ! aa) does not exceed the
total decay width �h of the 125GeV Higgs as measured directly at the LHC. For ma ⌧ mh

this leads to the inequality [22]

|ghaa| .
r

32⇡�h

mh

' 0.94 , (2.6)
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Figure 4. Feynman diagrams that lead to DM annihilation via ��̄ ! ah or ��̄ ! aH (left) and
��̄ ! aa in the 2HDM+a model. The possible decay modes of the pseudoscalar a, the SM-like
Higgs h and the heavy CP-even Higgs H are not shown. Further details are given in the main text.

s-channel processes and ��̄ ! aa with DM exchange in the t-channel (cf. also [9]). The an-
nihilation cross sections (5.1) of the former two reactions are, however, proportional to sin2 ✓

making them numerically irrelevant in the limit sin ✓ ! 0 unless ma = m�/2. Such highly
tuned solutions to the DM miracle will not be considered in what follows. Similarly, all DM
annihilation contributions involving the exchange of a heavy pseudoscalar A are suppressed
by at least two powers of the sine of the mixing angle ✓, so that only the processes depicted
in Figure 4 are relevant for the calculation of the DM abundance in the context of this work.

The annihilation process ��̄ ! a ! ah proceeds via s-wave and we find for the
corresponding coefficient the following analytic result

�
0
ah

=
y
2
� g

2
haa

cos2 ✓

32⇡

s

1� (mh +ma)
2

4m2
�

s

1� (mh �ma)
2

4m2
�

v
2

�
m2

a � 4m2
�

�2
+m2

a�
2
a

, (5.2)

where the expression for ghaa in the limit sin ✓ ! 0 can be found in the first line of (2.5)
and �a denotes the total decay width of the pseudoscalar a. Since �

0
ah

6= 0 we ignore the
p-wave coefficient �1

ah
below by setting it to zero. The result for the s-wave coefficient �0

aH

describing DM annihilation through ��̄ ! a ! aH is simply obtained from (5.2) by the
replacements ghaa ! gHaa and mh ! mH .

In the case of ��̄ ! aa the annihilation cross section is instead p-wave suppressed
(see [63] for the calculation of the t-channel contribution in the simplified pseudoscalar DM
model) and the corresponding expansion coefficients take the form �

0
aa = 0 and

�
1
aa =

y
4
� cos4 ✓

24⇡

s

1� m2
a

m2
�

m
2
�

�
m

2
a �m

2
�

�2
�
m2

a � 2m2
�

�4 . (5.3)

Using the velocity expansion (5.1) the DM relic density after freeze-out can be approx-
imated by

⌦h2

0.12
'

1.6 · 10�10GeV�2
xf

h�vrelif
, h�vrelif =

X

X

✓
�
0
X +

3�1
X

xf

◆
. (5.4)

Here xf = m�/Tf 2 [20, 30] with Tf the freeze-out temperature and the sum over X in
principle includes all possible final states. As we have explained above, for sin ✓ ' 0 and
away from the exceptional points ma = m�/2, however, only the channels X = ah, aH, aa
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1.2 2HDM+  in a nutshella

2 THDM plus pseudoscalar extensions

In this section we describe the structure of the simplified DM model with a pseudoscalar
mediator. We start with the scalar potential and then consider the Yukawa sector. In both
cases we will point out which are the new parameters corresponding to the interactions in
question.

2.1 Scalar potential

The tree-level THDM scalar potential that we will consider throughout this paper is given
by the following expression (see for example [42, 43])

VH = µ1H
†
1H1 + µ2H

†
2H2 +

⇣
µ3H

†
1H2 + h.c.

⌘
+ �1

�
H

†
1H1

�2
+ �2

�
H

†
2H2

�2

+ �3
�
H

†
1H1

��
H

†
2H2

�
+ �4

�
H

†
1H2

��
H

†
2H1

�
+

h
�5

�
H

†
1H2

�2
+ h.c.

i
.

(2.1)

Here we have imposed a Z2 symmetry under which H1 ! H1 and H2 ! �H2 to suppress
flavour-changing neutral currents (FCNCs), but allowed for this discrete symmetry to be
softly broken by the term µ3H

†
1H2 + h.c. The vacuum expectation values (VEVs) of the

Higgs doublets are given by hHii = (0, vi/
p

2)T with v =
p

v
2
1 + v

2
2 ' 246 GeV and we

define tan � = v2/v1. To avoid possible issues with electric dipole moments, we assume
that the mass-squared terms µj , the quartic couplings �k and the VEVs are all real and as
a result the scalar potential as given in (2.1) is CP conserving. The three physical neutral
Higgses that emerge from VH are in such a case both mass and CP eigenstates.

The most economic way to couple fermionic DM to the SM through pseudoscalar ex-
change is by mixing a CP-odd mediator P with the CP-odd Higgs that arises from (2.1).
This can be achieved by considering the following interaction terms

VP =
1

2
m

2
PP

2 + P

⇣
ibP H

†
1H2 + h.c.

⌘
+ P

2
⇣
�P1H

†
1H1 + �P2H

†
2H2

⌘
, (2.2)

where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
associated mixing angle. The resulting CP-even mass eigenstates will be denoted by h

and H, while in the CP-odd sector the states will be called A and a, where a denotes the
extra degree of freedom not present in THDMs. The scalar spectrum also contains two
charged mass eigenstates H

± of identical mass.
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flavour-changing neutral currents (FCNCs), but allowed for this discrete symmetry to be
softly broken by the term µ3H
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a result the scalar potential as given in (2.1) is CP conserving. The three physical neutral
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
associated mixing angle. The resulting CP-even mass eigenstates will be denoted by h

and H, while in the CP-odd sector the states will be called A and a, where a denotes the
extra degree of freedom not present in THDMs. The scalar spectrum also contains two
charged mass eigenstates H
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Here we have imposed a Z2 symmetry under which H1 ! H1 and H2 ! �H2 to suppress
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a result the scalar potential as given in (2.1) is CP conserving. The three physical neutral
Higgses that emerge from VH are in such a case both mass and CP eigenstates.
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
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Here we have imposed a Z2 symmetry under which H1 ! H1 and H2 ! �H2 to suppress
flavour-changing neutral currents (FCNCs), but allowed for this discrete symmetry to be
softly broken by the term µ3H
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define tan � = v2/v1. To avoid possible issues with electric dipole moments, we assume
that the mass-squared terms µj , the quartic couplings �k and the VEVs are all real and as
a result the scalar potential as given in (2.1) is CP conserving. The three physical neutral
Higgses that emerge from VH are in such a case both mass and CP eigenstates.

The most economic way to couple fermionic DM to the SM through pseudoscalar ex-
change is by mixing a CP-odd mediator P with the CP-odd Higgs that arises from (2.1).
This can be achieved by considering the following interaction terms
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
associated mixing angle. The resulting CP-even mass eigenstates will be denoted by h

and H, while in the CP-odd sector the states will be called A and a, where a denotes the
extra degree of freedom not present in THDMs. The scalar spectrum also contains two
charged mass eigenstates H

± of identical mass.
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
associated mixing angle. The resulting CP-even mass eigenstates will be denoted by h
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
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Diagonalising the mass-squared matrices of the scalar states leads to relations between
the fundamental parameters entering VH and VP . These relations allow to trade the pa-
rameters mP , µ1, µ2, µ3, bP , �1, �2, �4, �5 for sines and cosines of mixing angles, VEVs
and the masses of the physical Higgses. This procedure ensures in addition that the scalar
potential is positive definite and that the vacuum solution is an absolute minimum. In the
broken EW phase the physics of (2.1) and (2.2) is hence fully captured by the angles ↵, �,
✓, the EW VEV v, the quartic couplings �3, �P1, �P2 and the masses Mh, MH , MA, MH± ,
Ma. We will use these parameters as input in our analysis.

2.2 Yukawa sector

The couplings between the scalars and the SM fermions are restricted by the stringent exper-
imental limits on flavour observables. A necessary and sufficient condition to avoid FCNCs
associated to neutral Higgs tree-level exchange is that not more than one of the Higgs
doublets couples to fermions of a given charge [44, 45]. This so-called natural flavour con-
servation hypothesis is automatically enforced by the aforementioned Z2 symmetry acting
on the doublets, if the right-handed fermion singlets transform accordingly. The Yukawa
couplings are explicitly given by

LY = �

X

i=1,2

⇣
Q̄Y

i

uH̃iuR + Q̄Y
i

d
HidR + L̄Y

i

`
Hi`R + h.c.

⌘
. (2.3)

Here Y
i

f
are Yukawa matrices acting on the three fermion generations and we have sup-

pressed flavour indices, Q and L are left-handed quark and lepton doublets, while uR, dR

and `R are right-handed up-type quark, down-type quark and charged lepton singlets, re-
spectively. Finally, H̃i = ✏H

⇤
i

with ✏ denoting the two-dimensional antisymmetric tensor.
The natural flavour conservation hypothesis can be satisfied by four discrete assignments,
where by convention up-type quarks are always taken to couple to H2:

Y
1
u = Y

1
d

= Y
1
`

= 0 , (type I) ,

Y
1
u = Y

2
d

= Y
2
`

= 0 , (type II) ,

Y
1
u = Y

1
d

= Y
2
`

= 0 , (type III) ,

Y
1
u = Y

2
d

= Y
1
`

= 0 , (type IV) .

(2.4)

The dependence of our results on the choice of the Yukawa sector will be discussed in some
detail in the next section.

Taking DM to be a Dirac fermion � a separate Z2 symmetry under which � ! ��

can be used to forbid a coupling of the form L̄H̃1�R + h.c. At the level of renormalisable
operators this leaves

L� = �iy�P �̄�5� , (2.5)

as the only possibility to couple the pseudoscalar mediator P to DM. In order to not
violate CP we require the dark sector Yukawa coupling y� to be real. The parameter y�

and the DM mass m� are further input parameters in our analysis.
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
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the fundamental parameters entering VH and VP . These relations allow to trade the pa-
rameters mP , µ1, µ2, µ3, bP , �1, �2, �4, �5 for sines and cosines of mixing angles, VEVs
and the masses of the physical Higgses. This procedure ensures in addition that the scalar
potential is positive definite and that the vacuum solution is an absolute minimum. In the
broken EW phase the physics of (2.1) and (2.2) is hence fully captured by the angles ↵, �,
✓, the EW VEV v, the quartic couplings �3, �P1, �P2 and the masses Mh, MH , MA, MH± ,
Ma. We will use these parameters as input in our analysis.

2.2 Yukawa sector

The couplings between the scalars and the SM fermions are restricted by the stringent exper-
imental limits on flavour observables. A necessary and sufficient condition to avoid FCNCs
associated to neutral Higgs tree-level exchange is that not more than one of the Higgs
doublets couples to fermions of a given charge [44, 45]. This so-called natural flavour con-
servation hypothesis is automatically enforced by the aforementioned Z2 symmetry acting
on the doublets, if the right-handed fermion singlets transform accordingly. The Yukawa
couplings are explicitly given by

LY = �

X

i=1,2

⇣
Q̄Y

i

uH̃iuR + Q̄Y
i

d
HidR + L̄Y

i

`
Hi`R + h.c.

⌘
. (2.3)

Here Y
i

f
are Yukawa matrices acting on the three fermion generations and we have sup-

pressed flavour indices, Q and L are left-handed quark and lepton doublets, while uR, dR

and `R are right-handed up-type quark, down-type quark and charged lepton singlets, re-
spectively. Finally, H̃i = ✏H

⇤
i

with ✏ denoting the two-dimensional antisymmetric tensor.
The natural flavour conservation hypothesis can be satisfied by four discrete assignments,
where by convention up-type quarks are always taken to couple to H2:

Y
1
u = Y

1
d

= Y
1
`

= 0 , (type I) ,

Y
1
u = Y

2
d

= Y
2
`

= 0 , (type II) ,

Y
1
u = Y

1
d

= Y
2
`

= 0 , (type III) ,

Y
1
u = Y

2
d

= Y
1
`

= 0 , (type IV) .

(2.4)

The dependence of our results on the choice of the Yukawa sector will be discussed in some
detail in the next section.

Taking DM to be a Dirac fermion � a separate Z2 symmetry under which � ! ��

can be used to forbid a coupling of the form L̄H̃1�R + h.c. At the level of renormalisable
operators this leaves

L� = �iy�P �̄�5� , (2.5)

as the only possibility to couple the pseudoscalar mediator P to DM. In order to not
violate CP we require the dark sector Yukawa coupling y� to be real. The parameter y�

and the DM mass m� are further input parameters in our analysis.
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2 THDM plus pseudoscalar extensions

In this section we describe the structure of the simplified DM model with a pseudoscalar
mediator. We start with the scalar potential and then consider the Yukawa sector. In both
cases we will point out which are the new parameters corresponding to the interactions in
question.

2.1 Scalar potential

The tree-level THDM scalar potential that we will consider throughout this paper is given
by the following expression (see for example [42, 43])
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Here we have imposed a Z2 symmetry under which H1 ! H1 and H2 ! �H2 to suppress
flavour-changing neutral currents (FCNCs), but allowed for this discrete symmetry to be
softly broken by the term µ3H

†
1H2 + h.c. The vacuum expectation values (VEVs) of the

Higgs doublets are given by hHii = (0, vi/
p

2)T with v =
p

v
2
1 + v

2
2 ' 246 GeV and we

define tan � = v2/v1. To avoid possible issues with electric dipole moments, we assume
that the mass-squared terms µj , the quartic couplings �k and the VEVs are all real and as
a result the scalar potential as given in (2.1) is CP conserving. The three physical neutral
Higgses that emerge from VH are in such a case both mass and CP eigenstates.

The most economic way to couple fermionic DM to the SM through pseudoscalar ex-
change is by mixing a CP-odd mediator P with the CP-odd Higgs that arises from (2.1).
This can be achieved by considering the following interaction terms

VP =
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2
m
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†
1H2 + h.c.

⌘
+ P

2
⇣
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, (2.2)

where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
associated mixing angle. The resulting CP-even mass eigenstates will be denoted by h

and H, while in the CP-odd sector the states will be called A and a, where a denotes the
extra degree of freedom not present in THDMs. The scalar spectrum also contains two
charged mass eigenstates H

± of identical mass.
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Here we have imposed a Z2 symmetry under which H1 ! H1 and H2 ! �H2 to suppress
flavour-changing neutral currents (FCNCs), but allowed for this discrete symmetry to be
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that the mass-squared terms µj , the quartic couplings �k and the VEVs are all real and as
a result the scalar potential as given in (2.1) is CP conserving. The three physical neutral
Higgses that emerge from VH are in such a case both mass and CP eigenstates.

The most economic way to couple fermionic DM to the SM through pseudoscalar ex-
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
associated mixing angle. The resulting CP-even mass eigenstates will be denoted by h

and H, while in the CP-odd sector the states will be called A and a, where a denotes the
extra degree of freedom not present in THDMs. The scalar spectrum also contains two
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Diagonalising the mass-squared matrices of the scalar states leads to relations between
the fundamental parameters entering VH and VP . These relations allow to trade the pa-
rameters mP , µ1, µ2, µ3, bP , �1, �2, �4, �5 for sines and cosines of mixing angles, VEVs
and the masses of the physical Higgses. This procedure ensures in addition that the scalar
potential is positive definite and that the vacuum solution is an absolute minimum. In the
broken EW phase the physics of (2.1) and (2.2) is hence fully captured by the angles ↵, �,
✓, the EW VEV v, the quartic couplings �3, �P1, �P2 and the masses Mh, MH , MA, MH± ,
Ma. We will use these parameters as input in our analysis.

2.2 Yukawa sector

The couplings between the scalars and the SM fermions are restricted by the stringent exper-
imental limits on flavour observables. A necessary and sufficient condition to avoid FCNCs
associated to neutral Higgs tree-level exchange is that not more than one of the Higgs
doublets couples to fermions of a given charge [44, 45]. This so-called natural flavour con-
servation hypothesis is automatically enforced by the aforementioned Z2 symmetry acting
on the doublets, if the right-handed fermion singlets transform accordingly. The Yukawa
couplings are explicitly given by
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Here Y
i

f
are Yukawa matrices acting on the three fermion generations and we have sup-

pressed flavour indices, Q and L are left-handed quark and lepton doublets, while uR, dR

and `R are right-handed up-type quark, down-type quark and charged lepton singlets, re-
spectively. Finally, H̃i = ✏H

⇤
i

with ✏ denoting the two-dimensional antisymmetric tensor.
The natural flavour conservation hypothesis can be satisfied by four discrete assignments,
where by convention up-type quarks are always taken to couple to H2:

Y
1
u = Y

1
d

= Y
1
`
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The dependence of our results on the choice of the Yukawa sector will be discussed in some
detail in the next section.

Taking DM to be a Dirac fermion � a separate Z2 symmetry under which � ! ��

can be used to forbid a coupling of the form L̄H̃1�R + h.c. At the level of renormalisable
operators this leaves

L� = �iy�P �̄�5� , (2.5)

as the only possibility to couple the pseudoscalar mediator P to DM. In order to not
violate CP we require the dark sector Yukawa coupling y� to be real. The parameter y�

and the DM mass m� are further input parameters in our analysis.
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In this section we describe the structure of the simplified DM model with a pseudoscalar
mediator. We start with the scalar potential and then consider the Yukawa sector. In both
cases we will point out which are the new parameters corresponding to the interactions in
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Here we have imposed a Z2 symmetry under which H1 ! H1 and H2 ! �H2 to suppress
flavour-changing neutral currents (FCNCs), but allowed for this discrete symmetry to be
softly broken by the term µ3H
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1H2 + h.c. The vacuum expectation values (VEVs) of the
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define tan � = v2/v1. To avoid possible issues with electric dipole moments, we assume
that the mass-squared terms µj , the quartic couplings �k and the VEVs are all real and as
a result the scalar potential as given in (2.1) is CP conserving. The three physical neutral
Higgses that emerge from VH are in such a case both mass and CP eigenstates.

The most economic way to couple fermionic DM to the SM through pseudoscalar ex-
change is by mixing a CP-odd mediator P with the CP-odd Higgs that arises from (2.1).
This can be achieved by considering the following interaction terms
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
associated mixing angle. The resulting CP-even mass eigenstates will be denoted by h

and H, while in the CP-odd sector the states will be called A and a, where a denotes the
extra degree of freedom not present in THDMs. The scalar spectrum also contains two
charged mass eigenstates H
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Here we have imposed a Z2 symmetry under which H1 ! H1 and H2 ! �H2 to suppress
flavour-changing neutral currents (FCNCs), but allowed for this discrete symmetry to be
softly broken by the term µ3H
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that the mass-squared terms µj , the quartic couplings �k and the VEVs are all real and as
a result the scalar potential as given in (2.1) is CP conserving. The three physical neutral
Higgses that emerge from VH are in such a case both mass and CP eigenstates.
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
associated mixing angle. The resulting CP-even mass eigenstates will be denoted by h

and H, while in the CP-odd sector the states will be called A and a, where a denotes the
extra degree of freedom not present in THDMs. The scalar spectrum also contains two
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the fundamental parameters entering VH and VP . These relations allow to trade the pa-
rameters mP , µ1, µ2, µ3, bP , �1, �2, �4, �5 for sines and cosines of mixing angles, VEVs
and the masses of the physical Higgses. This procedure ensures in addition that the scalar
potential is positive definite and that the vacuum solution is an absolute minimum. In the
broken EW phase the physics of (2.1) and (2.2) is hence fully captured by the angles ↵, �,
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Ma. We will use these parameters as input in our analysis.

2.2 Yukawa sector

The couplings between the scalars and the SM fermions are restricted by the stringent exper-
imental limits on flavour observables. A necessary and sufficient condition to avoid FCNCs
associated to neutral Higgs tree-level exchange is that not more than one of the Higgs
doublets couples to fermions of a given charge [44, 45]. This so-called natural flavour con-
servation hypothesis is automatically enforced by the aforementioned Z2 symmetry acting
on the doublets, if the right-handed fermion singlets transform accordingly. The Yukawa
couplings are explicitly given by
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Here Y
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are Yukawa matrices acting on the three fermion generations and we have sup-

pressed flavour indices, Q and L are left-handed quark and lepton doublets, while uR, dR

and `R are right-handed up-type quark, down-type quark and charged lepton singlets, re-
spectively. Finally, H̃i = ✏H
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with ✏ denoting the two-dimensional antisymmetric tensor.
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where by convention up-type quarks are always taken to couple to H2:
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The dependence of our results on the choice of the Yukawa sector will be discussed in some
detail in the next section.

Taking DM to be a Dirac fermion � a separate Z2 symmetry under which � ! ��

can be used to forbid a coupling of the form L̄H̃1�R + h.c. At the level of renormalisable
operators this leaves

L� = �iy�P �̄�5� , (2.5)

as the only possibility to couple the pseudoscalar mediator P to DM. In order to not
violate CP we require the dark sector Yukawa coupling y� to be real. The parameter y�

and the DM mass m� are further input parameters in our analysis.
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.
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and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
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Here we have imposed a Z2 symmetry under which H1 ! H1 and H2 ! �H2 to suppress
flavour-changing neutral currents (FCNCs), but allowed for this discrete symmetry to be
softly broken by the term µ3H

†
1H2 + h.c. The vacuum expectation values (VEVs) of the

Higgs doublets are given by hHii = (0, vi/
p

2)T with v =
p

v
2
1 + v

2
2 ' 246 GeV and we

define tan � = v2/v1. To avoid possible issues with electric dipole moments, we assume
that the mass-squared terms µj , the quartic couplings �k and the VEVs are all real and as
a result the scalar potential as given in (2.1) is CP conserving. The three physical neutral
Higgses that emerge from VH are in such a case both mass and CP eigenstates.

The most economic way to couple fermionic DM to the SM through pseudoscalar ex-
change is by mixing a CP-odd mediator P with the CP-odd Higgs that arises from (2.1).
This can be achieved by considering the following interaction terms
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
associated mixing angle. The resulting CP-even mass eigenstates will be denoted by h

and H, while in the CP-odd sector the states will be called A and a, where a denotes the
extra degree of freedom not present in THDMs. The scalar spectrum also contains two
charged mass eigenstates H

± of identical mass.

– 4 –

Diagonalising the mass-squared matrices of the scalar states leads to relations between
the fundamental parameters entering VH and VP . These relations allow to trade the pa-
rameters mP , µ1, µ2, µ3, bP , �1, �2, �4, �5 for sines and cosines of mixing angles, VEVs
and the masses of the physical Higgses. This procedure ensures in addition that the scalar
potential is positive definite and that the vacuum solution is an absolute minimum. In the
broken EW phase the physics of (2.1) and (2.2) is hence fully captured by the angles ↵, �,
✓, the EW VEV v, the quartic couplings �3, �P1, �P2 and the masses Mh, MH , MA, MH± ,
Ma. We will use these parameters as input in our analysis.

2.2 Yukawa sector

The couplings between the scalars and the SM fermions are restricted by the stringent exper-
imental limits on flavour observables. A necessary and sufficient condition to avoid FCNCs
associated to neutral Higgs tree-level exchange is that not more than one of the Higgs
doublets couples to fermions of a given charge [44, 45]. This so-called natural flavour con-
servation hypothesis is automatically enforced by the aforementioned Z2 symmetry acting
on the doublets, if the right-handed fermion singlets transform accordingly. The Yukawa
couplings are explicitly given by
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Here Y
i

f
are Yukawa matrices acting on the three fermion generations and we have sup-

pressed flavour indices, Q and L are left-handed quark and lepton doublets, while uR, dR

and `R are right-handed up-type quark, down-type quark and charged lepton singlets, re-
spectively. Finally, H̃i = ✏H
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with ✏ denoting the two-dimensional antisymmetric tensor.
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The dependence of our results on the choice of the Yukawa sector will be discussed in some
detail in the next section.

Taking DM to be a Dirac fermion � a separate Z2 symmetry under which � ! ��

can be used to forbid a coupling of the form L̄H̃1�R + h.c. At the level of renormalisable
operators this leaves

L� = �iy�P �̄�5� , (2.5)

as the only possibility to couple the pseudoscalar mediator P to DM. In order to not
violate CP we require the dark sector Yukawa coupling y� to be real. The parameter y�

and the DM mass m� are further input parameters in our analysis.
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In this section we describe the structure of the simplified DM model with a pseudoscalar
mediator. We start with the scalar potential and then consider the Yukawa sector. In both
cases we will point out which are the new parameters corresponding to the interactions in
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2.1 Scalar potential
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Here we have imposed a Z2 symmetry under which H1 ! H1 and H2 ! �H2 to suppress
flavour-changing neutral currents (FCNCs), but allowed for this discrete symmetry to be
softly broken by the term µ3H
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1H2 + h.c. The vacuum expectation values (VEVs) of the
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define tan � = v2/v1. To avoid possible issues with electric dipole moments, we assume
that the mass-squared terms µj , the quartic couplings �k and the VEVs are all real and as
a result the scalar potential as given in (2.1) is CP conserving. The three physical neutral
Higgses that emerge from VH are in such a case both mass and CP eigenstates.

The most economic way to couple fermionic DM to the SM through pseudoscalar ex-
change is by mixing a CP-odd mediator P with the CP-odd Higgs that arises from (2.1).
This can be achieved by considering the following interaction terms
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
associated mixing angle. The resulting CP-even mass eigenstates will be denoted by h

and H, while in the CP-odd sector the states will be called A and a, where a denotes the
extra degree of freedom not present in THDMs. The scalar spectrum also contains two
charged mass eigenstates H

± of identical mass.
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Here we have imposed a Z2 symmetry under which H1 ! H1 and H2 ! �H2 to suppress
flavour-changing neutral currents (FCNCs), but allowed for this discrete symmetry to be
softly broken by the term µ3H
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define tan � = v2/v1. To avoid possible issues with electric dipole moments, we assume
that the mass-squared terms µj , the quartic couplings �k and the VEVs are all real and as
a result the scalar potential as given in (2.1) is CP conserving. The three physical neutral
Higgses that emerge from VH are in such a case both mass and CP eigenstates.

The most economic way to couple fermionic DM to the SM through pseudoscalar ex-
change is by mixing a CP-odd mediator P with the CP-odd Higgs that arises from (2.1).
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
associated mixing angle. The resulting CP-even mass eigenstates will be denoted by h

and H, while in the CP-odd sector the states will be called A and a, where a denotes the
extra degree of freedom not present in THDMs. The scalar spectrum also contains two
charged mass eigenstates H

± of identical mass.
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Here we have imposed a Z2 symmetry under which H1 ! H1 and H2 ! �H2 to suppress
flavour-changing neutral currents (FCNCs), but allowed for this discrete symmetry to be
softly broken by the term µ3H

†
1H2 + h.c. The vacuum expectation values (VEVs) of the

Higgs doublets are given by hHii = (0, vi/
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2
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define tan � = v2/v1. To avoid possible issues with electric dipole moments, we assume
that the mass-squared terms µj , the quartic couplings �k and the VEVs are all real and as
a result the scalar potential as given in (2.1) is CP conserving. The three physical neutral
Higgses that emerge from VH are in such a case both mass and CP eigenstates.

The most economic way to couple fermionic DM to the SM through pseudoscalar ex-
change is by mixing a CP-odd mediator P with the CP-odd Higgs that arises from (2.1).
This can be achieved by considering the following interaction terms
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
associated mixing angle. The resulting CP-even mass eigenstates will be denoted by h

and H, while in the CP-odd sector the states will be called A and a, where a denotes the
extra degree of freedom not present in THDMs. The scalar spectrum also contains two
charged mass eigenstates H

± of identical mass.
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Diagonalising the mass-squared matrices of the scalar states leads to relations between
the fundamental parameters entering VH and VP . These relations allow to trade the pa-
rameters mP , µ1, µ2, µ3, bP , �1, �2, �4, �5 for sines and cosines of mixing angles, VEVs
and the masses of the physical Higgses. This procedure ensures in addition that the scalar
potential is positive definite and that the vacuum solution is an absolute minimum. In the
broken EW phase the physics of (2.1) and (2.2) is hence fully captured by the angles ↵, �,
✓, the EW VEV v, the quartic couplings �3, �P1, �P2 and the masses Mh, MH , MA, MH± ,
Ma. We will use these parameters as input in our analysis.

2.2 Yukawa sector

The couplings between the scalars and the SM fermions are restricted by the stringent exper-
imental limits on flavour observables. A necessary and sufficient condition to avoid FCNCs
associated to neutral Higgs tree-level exchange is that not more than one of the Higgs
doublets couples to fermions of a given charge [44, 45]. This so-called natural flavour con-
servation hypothesis is automatically enforced by the aforementioned Z2 symmetry acting
on the doublets, if the right-handed fermion singlets transform accordingly. The Yukawa
couplings are explicitly given by

LY = �

X

i=1,2

⇣
Q̄Y

i

uH̃iuR + Q̄Y
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⌘
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Here Y
i

f
are Yukawa matrices acting on the three fermion generations and we have sup-

pressed flavour indices, Q and L are left-handed quark and lepton doublets, while uR, dR

and `R are right-handed up-type quark, down-type quark and charged lepton singlets, re-
spectively. Finally, H̃i = ✏H

⇤
i

with ✏ denoting the two-dimensional antisymmetric tensor.
The natural flavour conservation hypothesis can be satisfied by four discrete assignments,
where by convention up-type quarks are always taken to couple to H2:
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= 0 , (type I) ,
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The dependence of our results on the choice of the Yukawa sector will be discussed in some
detail in the next section.

Taking DM to be a Dirac fermion � a separate Z2 symmetry under which � ! ��

can be used to forbid a coupling of the form L̄H̃1�R + h.c. At the level of renormalisable
operators this leaves

L� = �iy�P �̄�5� , (2.5)

as the only possibility to couple the pseudoscalar mediator P to DM. In order to not
violate CP we require the dark sector Yukawa coupling y� to be real. The parameter y�

and the DM mass m� are further input parameters in our analysis.
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In this section we describe the structure of the simplified DM model with a pseudoscalar
mediator. We start with the scalar potential and then consider the Yukawa sector. In both
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Here we have imposed a Z2 symmetry under which H1 ! H1 and H2 ! �H2 to suppress
flavour-changing neutral currents (FCNCs), but allowed for this discrete symmetry to be
softly broken by the term µ3H

†
1H2 + h.c. The vacuum expectation values (VEVs) of the

Higgs doublets are given by hHii = (0, vi/
p

2)T with v =
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2
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2
2 ' 246 GeV and we

define tan � = v2/v1. To avoid possible issues with electric dipole moments, we assume
that the mass-squared terms µj , the quartic couplings �k and the VEVs are all real and as
a result the scalar potential as given in (2.1) is CP conserving. The three physical neutral
Higgses that emerge from VH are in such a case both mass and CP eigenstates.

The most economic way to couple fermionic DM to the SM through pseudoscalar ex-
change is by mixing a CP-odd mediator P with the CP-odd Higgs that arises from (2.1).
This can be achieved by considering the following interaction terms
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
associated mixing angle. The resulting CP-even mass eigenstates will be denoted by h

and H, while in the CP-odd sector the states will be called A and a, where a denotes the
extra degree of freedom not present in THDMs. The scalar spectrum also contains two
charged mass eigenstates H

± of identical mass.

– 4 –

Physical fields:    (three d.o.f. eaten by ) and .h, H, a, A, H± Z, W± χ
Physical parameters:  .α, β, θ, v, λ3, λP1, λP2, mh, mH, ma, mA, mH±

: mixing angle for pseudo-scalars ( )θ a, A: mixing angle for scalars ( )α h, H

2HDM scalar 
potential

pseudoscalar 
coupling

https://arxiv.org/pdf/1701.07427.pdf


1. Introduction

4

1.2 2HDM+  in a nutshella

2 THDM plus pseudoscalar extensions

In this section we describe the structure of the simplified DM model with a pseudoscalar
mediator. We start with the scalar potential and then consider the Yukawa sector. In both
cases we will point out which are the new parameters corresponding to the interactions in
question.

2.1 Scalar potential

The tree-level THDM scalar potential that we will consider throughout this paper is given
by the following expression (see for example [42, 43])

VH = µ1H
†
1H1 + µ2H

†
2H2 +

⇣
µ3H

†
1H2 + h.c.

⌘
+ �1

�
H

†
1H1

�2
+ �2

�
H

†
2H2

�2

+ �3
�
H

†
1H1

��
H

†
2H2

�
+ �4

�
H

†
1H2

��
H

†
2H1

�
+

h
�5

�
H

†
1H2

�2
+ h.c.

i
.

(2.1)

Here we have imposed a Z2 symmetry under which H1 ! H1 and H2 ! �H2 to suppress
flavour-changing neutral currents (FCNCs), but allowed for this discrete symmetry to be
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a result the scalar potential as given in (2.1) is CP conserving. The three physical neutral
Higgses that emerge from VH are in such a case both mass and CP eigenstates.
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
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Here we have imposed a Z2 symmetry under which H1 ! H1 and H2 ! �H2 to suppress
flavour-changing neutral currents (FCNCs), but allowed for this discrete symmetry to be
softly broken by the term µ3H

†
1H2 + h.c. The vacuum expectation values (VEVs) of the

Higgs doublets are given by hHii = (0, vi/
p

2)T with v =
p

v
2
1 + v

2
2 ' 246 GeV and we

define tan � = v2/v1. To avoid possible issues with electric dipole moments, we assume
that the mass-squared terms µj , the quartic couplings �k and the VEVs are all real and as
a result the scalar potential as given in (2.1) is CP conserving. The three physical neutral
Higgses that emerge from VH are in such a case both mass and CP eigenstates.

The most economic way to couple fermionic DM to the SM through pseudoscalar ex-
change is by mixing a CP-odd mediator P with the CP-odd Higgs that arises from (2.1).
This can be achieved by considering the following interaction terms

VP =
1

2
m

2
PP

2 + P

⇣
ibP H

†
1H2 + h.c.

⌘
+ P

2
⇣
�P1H

†
1H1 + �P2H

†
2H2

⌘
, (2.2)

where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
associated mixing angle. The resulting CP-even mass eigenstates will be denoted by h

and H, while in the CP-odd sector the states will be called A and a, where a denotes the
extra degree of freedom not present in THDMs. The scalar spectrum also contains two
charged mass eigenstates H

± of identical mass.
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Diagonalising the mass-squared matrices of the scalar states leads to relations between
the fundamental parameters entering VH and VP . These relations allow to trade the pa-
rameters mP , µ1, µ2, µ3, bP , �1, �2, �4, �5 for sines and cosines of mixing angles, VEVs
and the masses of the physical Higgses. This procedure ensures in addition that the scalar
potential is positive definite and that the vacuum solution is an absolute minimum. In the
broken EW phase the physics of (2.1) and (2.2) is hence fully captured by the angles ↵, �,
✓, the EW VEV v, the quartic couplings �3, �P1, �P2 and the masses Mh, MH , MA, MH± ,
Ma. We will use these parameters as input in our analysis.

2.2 Yukawa sector

The couplings between the scalars and the SM fermions are restricted by the stringent exper-
imental limits on flavour observables. A necessary and sufficient condition to avoid FCNCs
associated to neutral Higgs tree-level exchange is that not more than one of the Higgs
doublets couples to fermions of a given charge [44, 45]. This so-called natural flavour con-
servation hypothesis is automatically enforced by the aforementioned Z2 symmetry acting
on the doublets, if the right-handed fermion singlets transform accordingly. The Yukawa
couplings are explicitly given by
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⇣
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`
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⌘
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Here Y
i

f
are Yukawa matrices acting on the three fermion generations and we have sup-

pressed flavour indices, Q and L are left-handed quark and lepton doublets, while uR, dR

and `R are right-handed up-type quark, down-type quark and charged lepton singlets, re-
spectively. Finally, H̃i = ✏H

⇤
i

with ✏ denoting the two-dimensional antisymmetric tensor.
The natural flavour conservation hypothesis can be satisfied by four discrete assignments,
where by convention up-type quarks are always taken to couple to H2:

Y
1
u = Y

1
d

= Y
1
`

= 0 , (type I) ,

Y
1
u = Y

2
d

= Y
2
`

= 0 , (type II) ,

Y
1
u = Y

1
d

= Y
2
`

= 0 , (type III) ,

Y
1
u = Y

2
d

= Y
1
`

= 0 , (type IV) .

(2.4)

The dependence of our results on the choice of the Yukawa sector will be discussed in some
detail in the next section.

Taking DM to be a Dirac fermion � a separate Z2 symmetry under which � ! ��

can be used to forbid a coupling of the form L̄H̃1�R + h.c. At the level of renormalisable
operators this leaves

L� = �iy�P �̄�5� , (2.5)

as the only possibility to couple the pseudoscalar mediator P to DM. In order to not
violate CP we require the dark sector Yukawa coupling y� to be real. The parameter y�

and the DM mass m� are further input parameters in our analysis.
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In this section we describe the structure of the simplified DM model with a pseudoscalar
mediator. We start with the scalar potential and then consider the Yukawa sector. In both
cases we will point out which are the new parameters corresponding to the interactions in
question.

2.1 Scalar potential

The tree-level THDM scalar potential that we will consider throughout this paper is given
by the following expression (see for example [42, 43])
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Here we have imposed a Z2 symmetry under which H1 ! H1 and H2 ! �H2 to suppress
flavour-changing neutral currents (FCNCs), but allowed for this discrete symmetry to be
softly broken by the term µ3H
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1H2 + h.c. The vacuum expectation values (VEVs) of the

Higgs doublets are given by hHii = (0, vi/
p

2)T with v =
p
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1 + v

2
2 ' 246 GeV and we

define tan � = v2/v1. To avoid possible issues with electric dipole moments, we assume
that the mass-squared terms µj , the quartic couplings �k and the VEVs are all real and as
a result the scalar potential as given in (2.1) is CP conserving. The three physical neutral
Higgses that emerge from VH are in such a case both mass and CP eigenstates.

The most economic way to couple fermionic DM to the SM through pseudoscalar ex-
change is by mixing a CP-odd mediator P with the CP-odd Higgs that arises from (2.1).
This can be achieved by considering the following interaction terms
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where mP and bP are parameters with dimensions of mass. We assume that VP does not
break CP and thus take bP to be real in the following. In this case P does not develop a VEV
and remains a pure CP eigenstate. Nevertheless, this term does lead to a soft breaking of
the Z2 symmetry. Notice that compared to [19–21] which include only the trilinear portal
coupling bP , we also allow for quartic portal interactions proportional to �P1 and �P2.
A quartic self-coupling of the form P

4 has instead not been included in (2.2), as it does not
lead to any relevant effect in the observables studied in our paper.

The interactions in the scalar potential (2.1) mix the neutral CP-even weak eigenstates
and we denote the corresponding mixing angle by ↵. The portal coupling bP appearing
in (2.2) instead mixes the two neutral CP-odd weak eigenstates with ✓ representing the
associated mixing angle. The resulting CP-even mass eigenstates will be denoted by h

and H, while in the CP-odd sector the states will be called A and a, where a denotes the
extra degree of freedom not present in THDMs. The scalar spectrum also contains two
charged mass eigenstates H

± of identical mass.
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Figure 7. Examples of diagrams that give rise to a j + ET,miss signature through the exchange of
a lighter pseudoscalar a. Graphs involving a heavier pseudoscalar A also contribute to the signal
in the pseudoscalar extensions of the THDM but are not shown explicitly.

lower limit of tan � & 0.2 is obtained. The tt̄ + ET,miss constraints on the parameter space
of the pseudoscalar extensions of the THDM are however expected to improve notably at
forthcoming LHC runs. The numerical results that will be presented in Section 6.4 are based
on the search strategy developed recently in [94] which employs a shape fit to the difference
in pseudorapidity of the two charged leptons in the di-leptonic channel of tt̄ + ET,miss.

Besides tt̄+ET,miss also bb̄+ET,miss production [91, 92] has been advocated as a sensitive
probe of spin-0 portal couplings to heavy quarks. Recasting the most recent 13 TeV LHC
bb̄ + ET,miss searches [26, 27] by means of a simple rescaling similar to (5.1) we find that
no relevant bound on the parameter space of our simplified model can be derived unless
the abb̄ coupling is significantly enhanced. From (3.3) we see that such an enhancement
can only arise in THDMs of type II and IV, while it is not possible for the other Yukawa
assignments. Since in the limit of large tan � also direct searches for the light pseudoscalar a

in final states containing bottom quarks or charged leptons are relevant (and naively even
provide the leading constraints) we do not consider the bb̄+ET,miss channel in what follows,
restricting our numerical analysis to the parameter space with small tan �.

5.3 Mono-Z channel

A mono-X signal that is strongly suppressed in the case of the spin-0 DMF models [88]
but will turn out to be relevant in our simplified DM scenario is the mono-Z channel [21].
A sample of one-loop diagrams that lead to such a signature are displayed in Figure 9.
Notice that the left diagram in the figure allows for resonant Z + ��̄ production through
a HaZ vertex for a sufficiently heavy scalar H. Unlike the graph on the right-hand side it
has no counterpart in the spin-0 DMF simplified models.

As first emphasised in [20] the appearance of the contribution with virtual H and a

exchange not only enhances the mono-Z cross section compared to the spin-0 DMF models,
but also leads to quite different kinematics in Z + ��̄ production. In fact, for masses
MH > Ma + MZ the predicted ET,miss spectrum turns out to be peaked at

E
max
T,miss '

�
1/2(MH , Ma, MZ)

2MH

, (5.2)
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Figure 8. Two possible diagrams that give rise to a tt̄ + ET,miss signal. Graphs with both an
exchange of an a and A contribute in the THDM plus pseudoscalar extensions but only the former
are displayed.

where the two-body phase-space function �(m1, m2, m3) has been defined in (4.10). Denot-
ing the lower experimental requirement on ET,miss in a given mono-Z search by E

cut
T,miss the

latter result can be used to derive a simple bound on MH for which a significant fraction
of the total cross section will pass the cut. We obtain the inequality

MH & Ma +
q

M
2
Z

+
�
E

cut
T,miss

�2
. (5.3)

Given that in the latest mono-Z analyses [28–30] selection cuts of E
cut
T,miss ' 100 GeV are

imposed it follows that the scalar H has to have a mass of MH ' 500 GeV if one wants to
be sensitive to pseudoscalars a with masses up to the tt̄ threshold Ma ' 350 GeV.

Our detailed Monte Carlo (MC) simulations of the Z + ET,miss signal in Section 6.4
however reveals that the above kinematical argument alone is insufficient to understand the
shape of the mono-Z exclusion in the Ma– tan � plane in all instances. The reason for this
is twofold. First, in cases where sin ✓ is small H ! aZ is often not the dominant H decay
mode and as a result the Z + ET,miss measurements lose already sensitivity for masses Ma

below the bound implied by the estimate (5.3). Second, Z +��̄ production in gg ! aZ and
gg ! AZ is also possible through box diagrams, and the interference between triangle and
box graphs turns out to be very relevant in models that have a light scalar H or pseudoscalar
A with a mass below the tt̄ threshold. We add that for tan � > O(10) also resonant mono-Z
production via bb̄ ! aZ and bb̄ ! AZ can be relevant in models of type II and IV. In the
context of the pure THDM such effects have been studied for instance in [95].

5.4 Mono-Higgs channel

In certain regions of parameter space another possible smoking gun signature of the pseu-
doscalar extensions of the THDM turns out to be mono-Higgs production. As illustrated
in Figure 10 this signal can arise from two different types of one-loop diagrams. For
MA > Ma + Mh the triangle graph with an Aah vertex depicted on the left-hand side
allows for resonant mono-Higgs production and thus dominates over the contribution of
the box diagram displayed on the right. In consequence the mono-Higgs production cross
sections in the THDM plus pseudoscalar extensions can exceed by far the small spin-0 DMF
model rates for the h + ET,miss signal [88].
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Figure 9. Representative Feynman diagrams that lead to a Z +ET,miss signal in the pseudoscalar
extensions of the THDM. In the case of triangle diagram (left) only the shown graph contributes,
while in the case of the box diagram (right) instead of an a also an A exchange is possible.

Like in the case of the mono-Z signal the presence of triangle diagrams with a trilinear
scalar coupling also leads to a peak in the ET,miss distribution of h + ��̄ production if the
intermediate heavy pseudoscalar A can be resonantly produced. The peak position in the
mono-Higgs case is obtained from [20]

E
max
T,miss '

�
1/2(MA, Ma, Mh)

2MA

. (5.4)

It follows that in order for events to pass the ET,miss cut necessary for a background sup-
pression in mono-Higgs searches, the relation

MA & Ma +
q

M
2
h

+
�
E

cut
T,miss

�2
, (5.5)

has to be fulfilled. A lesson to learn from (5.5) is that mono-Higgs searches in the h ! bb̄

channel [31, 32] are less suited to constrain the parameter space of our simplified model
than those that focus on h ! �� [33, 34], because the minimal ET,miss requirements in the
former analyses are always stricter than those in the latter. To give a relevant numerical
example let us consider E

cut
T,miss ' 100 GeV, which represents a typical ET,miss cut imposed

in the most recent h + ��̄ (h ! ��) searches. From (5.5) one sees that in such a case
mono-Higgs analyses are very sensitive to masses up to Ma ' 330 GeV for MA ' 500 GeV.

Like in the mono-Z case the above kinematical argument however allows only for a
qualitative understanding of the numerical results for the pp ! h+��̄ (h ! ��) exclusions,
since interference effects can be important in scenarios with a pseudoscalar A of mass
MA < 2mt. Notice that if Ma > MA + Mh the role of A and a is interchanged and the
h + ET,miss signal can receive large corrections from resonant a exchanges, as we will see
explicitly in Section 6.4. Finally in type II and IV models resonant mono-Higgs production
from bb̄ initial states can also be important if tan � is sufficiently large.

5.5 Mono-W channel

The last ET,miss signal that we consider is the mono-W channel [35, 36]. Two representative
Feynman graphs that lead to a resonant W +ET,miss signature in the pseudoscalar extension
of the THDM are shown in Figure 11. These diagrams describe the single production of a
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Figure 11. Examples of diagrams that lead to a W + ET,miss signature through the exchange of
a charged Higgs H

± and a lighter pseudoscalar a in the THDM plus pseudoscalar extension.

Z + ET,miss (Z ! `
+
`
�) and h + ET,miss (h ! ��) signal samples is performed at lead-

ing order (LO) with MadGraph5_aMC@NLO [99] using PYTHIA 8.2 [100] for showering and
NNPDF2.3 [101] as parton distribution functions. The whole MC chain is steered with
CheckMATE 2 [102] which itself employs FastJet [103] to reconstruct hadronic jets and
Delphes 3 [104] as a fast-detector simulation. The results of the CheckMATE 2 analyses
have been validated against MadAnalysis 5 [105, 106]. The selection requirements im-
posed in our analyses resemble those used in the recent LHC mono-jet [22], mono-Z [28]
and mono-Higgs [34] search, respectively. For what concerns our tt̄ + ET,miss (t ! `b⌫)

recast we rely on the results of the sensitivity study [94]. In this analysis the DM signal has
been simulated at next-to-leading order (NLO) with MadGraph5_aMC@NLO and PYTHIA 8.2
using a FxFx NLO jet matching prescription [107] and the final-state top quarks have been
decayed with MadSpin [108].

6.2 Background estimates

For the j+ET,miss, Z+ET,miss (Z ! `
+
`
�) and h+ET,miss (h ! ��) recasts our background

estimates rely on the background predictions obtained in the 13 TeV LHC analyses [22], [28]
and [34], respectively. The given background numbers correspond to 3.2 fb�1, 13.3 fb�1,
2.3 fb�1 and we extrapolate them to 40 fb�1 of integrated luminosity to be able to assess
the near-term reach of the different mono-X channels. Our extrapolations assume that
while the relative systematic uncertainties remain the same, the relative statistical errors
scale as 1/

p
L with luminosity L. Depending on the signal region the relative systematic

uncertainties amount to around 4% to 9% in the case of the mono-jet search, about 7% for
the mono-Z analysis and approximately 20% for the mono-Higgs channel.

Since the j + ET,miss search is already systematics limited at 40 fb�1 its constraining
power will depend sensitively on the assumption about the future systematic uncertainty
on the associated SM background. This should be kept in mind when comparing the
different exclusions presented below, because a better understanding of the backgrounds
can have a visible impact on the obtained results. Since the tt̄ + ET,miss (t ! `b⌫) search
will still be statistically limited for 40 fb�1, we base our forecast in this case on a data set of
300 fb�1 assuming that the relevant SM background is known to 20%. In the mono-Z and
mono-Higgs cases we will present below, besides 40 fb�1 projections, results for 100 fb�1

and 300 fb�1 of data. From these results one can assess if the existing Z + ET,miss and
h + ET,miss search strategies will at some point become systematics limited in LHC Run II.
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Figure 10. Sample diagrams in the THDM with an extra pseudoscalar that induce a h + ET,miss

signal in the alignment/decoupling limit. Graphs in which the role of a and A is interchanged can
also provide a relevant contribution.

charged Higgs H
± via the annihilation of light quarks followed by H

±
! aW

± (a ! ��̄).
One way to assess the prospects for detecting a mono-W signature consists in comparing the
production cross sections of H

± to that of H and A. Using for instance tan � = 1, we find
� (pp ! H

+) ' 1.0 fb for MH± = 500 GeV and � (pp ! H
+) ' 0.2 fb for MH± = 750 GeV

at the 13 TeV LHC. The corresponding cross sections in the case of the heavy neutral spin-0
resonances read � (pp ! H) ' 1.4 pb and � (pp ! A) ' 3.1 pb and � (pp ! H) ' 0.2 pb

and � (pp ! A) ' 0.3 pb, respectively. These numbers strongly suggest that an observation
of a mono-W signal is compared to that of a mono-Z or mono-Higgs signature much less
probable. We thus do not consider the W + ET,miss channel any further.

Let us finally add that besides a simple mono-W signature also Wt + ET,miss and
Wtb + ET,miss signals can appear in the DM model introduced in Section 2. For the rel-
evant charged Higgs production cross sections we find at 13 TeV the results �

�
gb̄ ! H

+
t̄
�
'

0.17 pb (�
�
gb̄ ! H

+
t̄
�
' 0.04 pb) and � (gg ! H

+
t̄b) ' 0.10 pb (� (gg ! H

+
t̄b) ' 0.02 pb)

using tan � = 1 and MH± = 500 GeV (MH± = 750 GeV). Given the small H
± production

cross section in gb and gg fusion, we expect that searches for a Wt+ET,miss or a Wtb+ET,miss

signal will in practice provide no relevant constraint in the small tan � regime.

6 Numerical results

The numerical results of our mono-X analyses are presented in this section. After a brief
description of the signal generation and the background estimates, we first study the impact
of interference effects between the a and A contributions to the j+��̄ and tt̄+��̄ channels.
Then the constraints on the parameter space of the THDM plus pseudoscalar extensions
are derived for several well-motivated benchmark scenarios. In the case of the mono-Z and
mono-Higgs searches we also discuss the LHC Run II reach in some detail.

6.1 Signal generation

The starting point of our MC simulations is a UFO implementation [96] of the simpli-
fied model as described in Section 2. This implementation has been obtained by means
of the FeynRules 2 [97] and NLOCT [98] packages. The generation of the j + ET,miss,
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lower limit of tan � & 0.2 is obtained. The tt̄ + ET,miss constraints on the parameter space
of the pseudoscalar extensions of the THDM are however expected to improve notably at
forthcoming LHC runs. The numerical results that will be presented in Section 6.4 are based
on the search strategy developed recently in [94] which employs a shape fit to the difference
in pseudorapidity of the two charged leptons in the di-leptonic channel of tt̄ + ET,miss.

Besides tt̄+ET,miss also bb̄+ET,miss production [91, 92] has been advocated as a sensitive
probe of spin-0 portal couplings to heavy quarks. Recasting the most recent 13 TeV LHC
bb̄ + ET,miss searches [26, 27] by means of a simple rescaling similar to (5.1) we find that
no relevant bound on the parameter space of our simplified model can be derived unless
the abb̄ coupling is significantly enhanced. From (3.3) we see that such an enhancement
can only arise in THDMs of type II and IV, while it is not possible for the other Yukawa
assignments. Since in the limit of large tan � also direct searches for the light pseudoscalar a

in final states containing bottom quarks or charged leptons are relevant (and naively even
provide the leading constraints) we do not consider the bb̄+ET,miss channel in what follows,
restricting our numerical analysis to the parameter space with small tan �.

5.3 Mono-Z channel

A mono-X signal that is strongly suppressed in the case of the spin-0 DMF models [88]
but will turn out to be relevant in our simplified DM scenario is the mono-Z channel [21].
A sample of one-loop diagrams that lead to such a signature are displayed in Figure 9.
Notice that the left diagram in the figure allows for resonant Z + ��̄ production through
a HaZ vertex for a sufficiently heavy scalar H. Unlike the graph on the right-hand side it
has no counterpart in the spin-0 DMF simplified models.

As first emphasised in [20] the appearance of the contribution with virtual H and a

exchange not only enhances the mono-Z cross section compared to the spin-0 DMF models,
but also leads to quite different kinematics in Z + ��̄ production. In fact, for masses
MH > Ma + MZ the predicted ET,miss spectrum turns out to be peaked at

E
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�
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, (5.2)
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Figure 8. Two possible diagrams that give rise to a tt̄ + ET,miss signal. Graphs with both an
exchange of an a and A contribute in the THDM plus pseudoscalar extensions but only the former
are displayed.

where the two-body phase-space function �(m1, m2, m3) has been defined in (4.10). Denot-
ing the lower experimental requirement on ET,miss in a given mono-Z search by E

cut
T,miss the

latter result can be used to derive a simple bound on MH for which a significant fraction
of the total cross section will pass the cut. We obtain the inequality

MH & Ma +
q

M
2
Z

+
�
E

cut
T,miss

�2
. (5.3)

Given that in the latest mono-Z analyses [28–30] selection cuts of E
cut
T,miss ' 100 GeV are

imposed it follows that the scalar H has to have a mass of MH ' 500 GeV if one wants to
be sensitive to pseudoscalars a with masses up to the tt̄ threshold Ma ' 350 GeV.

Our detailed Monte Carlo (MC) simulations of the Z + ET,miss signal in Section 6.4
however reveals that the above kinematical argument alone is insufficient to understand the
shape of the mono-Z exclusion in the Ma– tan � plane in all instances. The reason for this
is twofold. First, in cases where sin ✓ is small H ! aZ is often not the dominant H decay
mode and as a result the Z + ET,miss measurements lose already sensitivity for masses Ma

below the bound implied by the estimate (5.3). Second, Z +��̄ production in gg ! aZ and
gg ! AZ is also possible through box diagrams, and the interference between triangle and
box graphs turns out to be very relevant in models that have a light scalar H or pseudoscalar
A with a mass below the tt̄ threshold. We add that for tan � > O(10) also resonant mono-Z
production via bb̄ ! aZ and bb̄ ! AZ can be relevant in models of type II and IV. In the
context of the pure THDM such effects have been studied for instance in [95].

5.4 Mono-Higgs channel

In certain regions of parameter space another possible smoking gun signature of the pseu-
doscalar extensions of the THDM turns out to be mono-Higgs production. As illustrated
in Figure 10 this signal can arise from two different types of one-loop diagrams. For
MA > Ma + Mh the triangle graph with an Aah vertex depicted on the left-hand side
allows for resonant mono-Higgs production and thus dominates over the contribution of
the box diagram displayed on the right. In consequence the mono-Higgs production cross
sections in the THDM plus pseudoscalar extensions can exceed by far the small spin-0 DMF
model rates for the h + ET,miss signal [88].
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Figure 9. Representative Feynman diagrams that lead to a Z +ET,miss signal in the pseudoscalar
extensions of the THDM. In the case of triangle diagram (left) only the shown graph contributes,
while in the case of the box diagram (right) instead of an a also an A exchange is possible.

Like in the case of the mono-Z signal the presence of triangle diagrams with a trilinear
scalar coupling also leads to a peak in the ET,miss distribution of h + ��̄ production if the
intermediate heavy pseudoscalar A can be resonantly produced. The peak position in the
mono-Higgs case is obtained from [20]

E
max
T,miss '

�
1/2(MA, Ma, Mh)

2MA

. (5.4)

It follows that in order for events to pass the ET,miss cut necessary for a background sup-
pression in mono-Higgs searches, the relation

MA & Ma +
q

M
2
h

+
�
E

cut
T,miss

�2
, (5.5)

has to be fulfilled. A lesson to learn from (5.5) is that mono-Higgs searches in the h ! bb̄

channel [31, 32] are less suited to constrain the parameter space of our simplified model
than those that focus on h ! �� [33, 34], because the minimal ET,miss requirements in the
former analyses are always stricter than those in the latter. To give a relevant numerical
example let us consider E

cut
T,miss ' 100 GeV, which represents a typical ET,miss cut imposed

in the most recent h + ��̄ (h ! ��) searches. From (5.5) one sees that in such a case
mono-Higgs analyses are very sensitive to masses up to Ma ' 330 GeV for MA ' 500 GeV.

Like in the mono-Z case the above kinematical argument however allows only for a
qualitative understanding of the numerical results for the pp ! h+��̄ (h ! ��) exclusions,
since interference effects can be important in scenarios with a pseudoscalar A of mass
MA < 2mt. Notice that if Ma > MA + Mh the role of A and a is interchanged and the
h + ET,miss signal can receive large corrections from resonant a exchanges, as we will see
explicitly in Section 6.4. Finally in type II and IV models resonant mono-Higgs production
from bb̄ initial states can also be important if tan � is sufficiently large.

5.5 Mono-W channel

The last ET,miss signal that we consider is the mono-W channel [35, 36]. Two representative
Feynman graphs that lead to a resonant W +ET,miss signature in the pseudoscalar extension
of the THDM are shown in Figure 11. These diagrams describe the single production of a
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Figure 11. Examples of diagrams that lead to a W + ET,miss signature through the exchange of
a charged Higgs H

± and a lighter pseudoscalar a in the THDM plus pseudoscalar extension.

Z + ET,miss (Z ! `
+
`
�) and h + ET,miss (h ! ��) signal samples is performed at lead-

ing order (LO) with MadGraph5_aMC@NLO [99] using PYTHIA 8.2 [100] for showering and
NNPDF2.3 [101] as parton distribution functions. The whole MC chain is steered with
CheckMATE 2 [102] which itself employs FastJet [103] to reconstruct hadronic jets and
Delphes 3 [104] as a fast-detector simulation. The results of the CheckMATE 2 analyses
have been validated against MadAnalysis 5 [105, 106]. The selection requirements im-
posed in our analyses resemble those used in the recent LHC mono-jet [22], mono-Z [28]
and mono-Higgs [34] search, respectively. For what concerns our tt̄ + ET,miss (t ! `b⌫)

recast we rely on the results of the sensitivity study [94]. In this analysis the DM signal has
been simulated at next-to-leading order (NLO) with MadGraph5_aMC@NLO and PYTHIA 8.2
using a FxFx NLO jet matching prescription [107] and the final-state top quarks have been
decayed with MadSpin [108].

6.2 Background estimates

For the j+ET,miss, Z+ET,miss (Z ! `
+
`
�) and h+ET,miss (h ! ��) recasts our background

estimates rely on the background predictions obtained in the 13 TeV LHC analyses [22], [28]
and [34], respectively. The given background numbers correspond to 3.2 fb�1, 13.3 fb�1,
2.3 fb�1 and we extrapolate them to 40 fb�1 of integrated luminosity to be able to assess
the near-term reach of the different mono-X channels. Our extrapolations assume that
while the relative systematic uncertainties remain the same, the relative statistical errors
scale as 1/

p
L with luminosity L. Depending on the signal region the relative systematic

uncertainties amount to around 4% to 9% in the case of the mono-jet search, about 7% for
the mono-Z analysis and approximately 20% for the mono-Higgs channel.

Since the j + ET,miss search is already systematics limited at 40 fb�1 its constraining
power will depend sensitively on the assumption about the future systematic uncertainty
on the associated SM background. This should be kept in mind when comparing the
different exclusions presented below, because a better understanding of the backgrounds
can have a visible impact on the obtained results. Since the tt̄ + ET,miss (t ! `b⌫) search
will still be statistically limited for 40 fb�1, we base our forecast in this case on a data set of
300 fb�1 assuming that the relevant SM background is known to 20%. In the mono-Z and
mono-Higgs cases we will present below, besides 40 fb�1 projections, results for 100 fb�1

and 300 fb�1 of data. From these results one can assess if the existing Z + ET,miss and
h + ET,miss search strategies will at some point become systematics limited in LHC Run II.
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Figure 10. Sample diagrams in the THDM with an extra pseudoscalar that induce a h + ET,miss

signal in the alignment/decoupling limit. Graphs in which the role of a and A is interchanged can
also provide a relevant contribution.

charged Higgs H
± via the annihilation of light quarks followed by H

±
! aW

± (a ! ��̄).
One way to assess the prospects for detecting a mono-W signature consists in comparing the
production cross sections of H

± to that of H and A. Using for instance tan � = 1, we find
� (pp ! H

+) ' 1.0 fb for MH± = 500 GeV and � (pp ! H
+) ' 0.2 fb for MH± = 750 GeV

at the 13 TeV LHC. The corresponding cross sections in the case of the heavy neutral spin-0
resonances read � (pp ! H) ' 1.4 pb and � (pp ! A) ' 3.1 pb and � (pp ! H) ' 0.2 pb

and � (pp ! A) ' 0.3 pb, respectively. These numbers strongly suggest that an observation
of a mono-W signal is compared to that of a mono-Z or mono-Higgs signature much less
probable. We thus do not consider the W + ET,miss channel any further.

Let us finally add that besides a simple mono-W signature also Wt + ET,miss and
Wtb + ET,miss signals can appear in the DM model introduced in Section 2. For the rel-
evant charged Higgs production cross sections we find at 13 TeV the results �

�
gb̄ ! H

+
t̄
�
'

0.17 pb (�
�
gb̄ ! H

+
t̄
�
' 0.04 pb) and � (gg ! H

+
t̄b) ' 0.10 pb (� (gg ! H

+
t̄b) ' 0.02 pb)

using tan � = 1 and MH± = 500 GeV (MH± = 750 GeV). Given the small H
± production

cross section in gb and gg fusion, we expect that searches for a Wt+ET,miss or a Wtb+ET,miss

signal will in practice provide no relevant constraint in the small tan � regime.

6 Numerical results

The numerical results of our mono-X analyses are presented in this section. After a brief
description of the signal generation and the background estimates, we first study the impact
of interference effects between the a and A contributions to the j+��̄ and tt̄+��̄ channels.
Then the constraints on the parameter space of the THDM plus pseudoscalar extensions
are derived for several well-motivated benchmark scenarios. In the case of the mono-Z and
mono-Higgs searches we also discuss the LHC Run II reach in some detail.

6.1 Signal generation

The starting point of our MC simulations is a UFO implementation [96] of the simpli-
fied model as described in Section 2. This implementation has been obtained by means
of the FeynRules 2 [97] and NLOCT [98] packages. The generation of the j + ET,miss,
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Source: ArXiv:1701.07427 (M. Bauer, U. Haisch and F. Kahlhoefer).
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Figure 7. Examples of diagrams that give rise to a j + ET,miss signature through the exchange of
a lighter pseudoscalar a. Graphs involving a heavier pseudoscalar A also contribute to the signal
in the pseudoscalar extensions of the THDM but are not shown explicitly.

lower limit of tan � & 0.2 is obtained. The tt̄ + ET,miss constraints on the parameter space
of the pseudoscalar extensions of the THDM are however expected to improve notably at
forthcoming LHC runs. The numerical results that will be presented in Section 6.4 are based
on the search strategy developed recently in [94] which employs a shape fit to the difference
in pseudorapidity of the two charged leptons in the di-leptonic channel of tt̄ + ET,miss.

Besides tt̄+ET,miss also bb̄+ET,miss production [91, 92] has been advocated as a sensitive
probe of spin-0 portal couplings to heavy quarks. Recasting the most recent 13 TeV LHC
bb̄ + ET,miss searches [26, 27] by means of a simple rescaling similar to (5.1) we find that
no relevant bound on the parameter space of our simplified model can be derived unless
the abb̄ coupling is significantly enhanced. From (3.3) we see that such an enhancement
can only arise in THDMs of type II and IV, while it is not possible for the other Yukawa
assignments. Since in the limit of large tan � also direct searches for the light pseudoscalar a

in final states containing bottom quarks or charged leptons are relevant (and naively even
provide the leading constraints) we do not consider the bb̄+ET,miss channel in what follows,
restricting our numerical analysis to the parameter space with small tan �.

5.3 Mono-Z channel

A mono-X signal that is strongly suppressed in the case of the spin-0 DMF models [88]
but will turn out to be relevant in our simplified DM scenario is the mono-Z channel [21].
A sample of one-loop diagrams that lead to such a signature are displayed in Figure 9.
Notice that the left diagram in the figure allows for resonant Z + ��̄ production through
a HaZ vertex for a sufficiently heavy scalar H. Unlike the graph on the right-hand side it
has no counterpart in the spin-0 DMF simplified models.

As first emphasised in [20] the appearance of the contribution with virtual H and a

exchange not only enhances the mono-Z cross section compared to the spin-0 DMF models,
but also leads to quite different kinematics in Z + ��̄ production. In fact, for masses
MH > Ma + MZ the predicted ET,miss spectrum turns out to be peaked at

E
max
T,miss '

�
1/2(MH , Ma, MZ)

2MH

, (5.2)
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Figure 8. Two possible diagrams that give rise to a tt̄ + ET,miss signal. Graphs with both an
exchange of an a and A contribute in the THDM plus pseudoscalar extensions but only the former
are displayed.

where the two-body phase-space function �(m1, m2, m3) has been defined in (4.10). Denot-
ing the lower experimental requirement on ET,miss in a given mono-Z search by E

cut
T,miss the

latter result can be used to derive a simple bound on MH for which a significant fraction
of the total cross section will pass the cut. We obtain the inequality

MH & Ma +
q

M
2
Z

+
�
E

cut
T,miss

�2
. (5.3)

Given that in the latest mono-Z analyses [28–30] selection cuts of E
cut
T,miss ' 100 GeV are

imposed it follows that the scalar H has to have a mass of MH ' 500 GeV if one wants to
be sensitive to pseudoscalars a with masses up to the tt̄ threshold Ma ' 350 GeV.

Our detailed Monte Carlo (MC) simulations of the Z + ET,miss signal in Section 6.4
however reveals that the above kinematical argument alone is insufficient to understand the
shape of the mono-Z exclusion in the Ma– tan � plane in all instances. The reason for this
is twofold. First, in cases where sin ✓ is small H ! aZ is often not the dominant H decay
mode and as a result the Z + ET,miss measurements lose already sensitivity for masses Ma

below the bound implied by the estimate (5.3). Second, Z +��̄ production in gg ! aZ and
gg ! AZ is also possible through box diagrams, and the interference between triangle and
box graphs turns out to be very relevant in models that have a light scalar H or pseudoscalar
A with a mass below the tt̄ threshold. We add that for tan � > O(10) also resonant mono-Z
production via bb̄ ! aZ and bb̄ ! AZ can be relevant in models of type II and IV. In the
context of the pure THDM such effects have been studied for instance in [95].

5.4 Mono-Higgs channel

In certain regions of parameter space another possible smoking gun signature of the pseu-
doscalar extensions of the THDM turns out to be mono-Higgs production. As illustrated
in Figure 10 this signal can arise from two different types of one-loop diagrams. For
MA > Ma + Mh the triangle graph with an Aah vertex depicted on the left-hand side
allows for resonant mono-Higgs production and thus dominates over the contribution of
the box diagram displayed on the right. In consequence the mono-Higgs production cross
sections in the THDM plus pseudoscalar extensions can exceed by far the small spin-0 DMF
model rates for the h + ET,miss signal [88].
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Figure 9. Representative Feynman diagrams that lead to a Z +ET,miss signal in the pseudoscalar
extensions of the THDM. In the case of triangle diagram (left) only the shown graph contributes,
while in the case of the box diagram (right) instead of an a also an A exchange is possible.

Like in the case of the mono-Z signal the presence of triangle diagrams with a trilinear
scalar coupling also leads to a peak in the ET,miss distribution of h + ��̄ production if the
intermediate heavy pseudoscalar A can be resonantly produced. The peak position in the
mono-Higgs case is obtained from [20]

E
max
T,miss '

�
1/2(MA, Ma, Mh)

2MA

. (5.4)

It follows that in order for events to pass the ET,miss cut necessary for a background sup-
pression in mono-Higgs searches, the relation

MA & Ma +
q

M
2
h

+
�
E

cut
T,miss

�2
, (5.5)

has to be fulfilled. A lesson to learn from (5.5) is that mono-Higgs searches in the h ! bb̄

channel [31, 32] are less suited to constrain the parameter space of our simplified model
than those that focus on h ! �� [33, 34], because the minimal ET,miss requirements in the
former analyses are always stricter than those in the latter. To give a relevant numerical
example let us consider E

cut
T,miss ' 100 GeV, which represents a typical ET,miss cut imposed

in the most recent h + ��̄ (h ! ��) searches. From (5.5) one sees that in such a case
mono-Higgs analyses are very sensitive to masses up to Ma ' 330 GeV for MA ' 500 GeV.

Like in the mono-Z case the above kinematical argument however allows only for a
qualitative understanding of the numerical results for the pp ! h+��̄ (h ! ��) exclusions,
since interference effects can be important in scenarios with a pseudoscalar A of mass
MA < 2mt. Notice that if Ma > MA + Mh the role of A and a is interchanged and the
h + ET,miss signal can receive large corrections from resonant a exchanges, as we will see
explicitly in Section 6.4. Finally in type II and IV models resonant mono-Higgs production
from bb̄ initial states can also be important if tan � is sufficiently large.

5.5 Mono-W channel

The last ET,miss signal that we consider is the mono-W channel [35, 36]. Two representative
Feynman graphs that lead to a resonant W +ET,miss signature in the pseudoscalar extension
of the THDM are shown in Figure 11. These diagrams describe the single production of a
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Figure 11. Examples of diagrams that lead to a W + ET,miss signature through the exchange of
a charged Higgs H

± and a lighter pseudoscalar a in the THDM plus pseudoscalar extension.

Z + ET,miss (Z ! `
+
`
�) and h + ET,miss (h ! ��) signal samples is performed at lead-

ing order (LO) with MadGraph5_aMC@NLO [99] using PYTHIA 8.2 [100] for showering and
NNPDF2.3 [101] as parton distribution functions. The whole MC chain is steered with
CheckMATE 2 [102] which itself employs FastJet [103] to reconstruct hadronic jets and
Delphes 3 [104] as a fast-detector simulation. The results of the CheckMATE 2 analyses
have been validated against MadAnalysis 5 [105, 106]. The selection requirements im-
posed in our analyses resemble those used in the recent LHC mono-jet [22], mono-Z [28]
and mono-Higgs [34] search, respectively. For what concerns our tt̄ + ET,miss (t ! `b⌫)

recast we rely on the results of the sensitivity study [94]. In this analysis the DM signal has
been simulated at next-to-leading order (NLO) with MadGraph5_aMC@NLO and PYTHIA 8.2
using a FxFx NLO jet matching prescription [107] and the final-state top quarks have been
decayed with MadSpin [108].

6.2 Background estimates

For the j+ET,miss, Z+ET,miss (Z ! `
+
`
�) and h+ET,miss (h ! ��) recasts our background

estimates rely on the background predictions obtained in the 13 TeV LHC analyses [22], [28]
and [34], respectively. The given background numbers correspond to 3.2 fb�1, 13.3 fb�1,
2.3 fb�1 and we extrapolate them to 40 fb�1 of integrated luminosity to be able to assess
the near-term reach of the different mono-X channels. Our extrapolations assume that
while the relative systematic uncertainties remain the same, the relative statistical errors
scale as 1/

p
L with luminosity L. Depending on the signal region the relative systematic

uncertainties amount to around 4% to 9% in the case of the mono-jet search, about 7% for
the mono-Z analysis and approximately 20% for the mono-Higgs channel.

Since the j + ET,miss search is already systematics limited at 40 fb�1 its constraining
power will depend sensitively on the assumption about the future systematic uncertainty
on the associated SM background. This should be kept in mind when comparing the
different exclusions presented below, because a better understanding of the backgrounds
can have a visible impact on the obtained results. Since the tt̄ + ET,miss (t ! `b⌫) search
will still be statistically limited for 40 fb�1, we base our forecast in this case on a data set of
300 fb�1 assuming that the relevant SM background is known to 20%. In the mono-Z and
mono-Higgs cases we will present below, besides 40 fb�1 projections, results for 100 fb�1

and 300 fb�1 of data. From these results one can assess if the existing Z + ET,miss and
h + ET,miss search strategies will at some point become systematics limited in LHC Run II.
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Figure 10. Sample diagrams in the THDM with an extra pseudoscalar that induce a h + ET,miss

signal in the alignment/decoupling limit. Graphs in which the role of a and A is interchanged can
also provide a relevant contribution.

charged Higgs H
± via the annihilation of light quarks followed by H

±
! aW

± (a ! ��̄).
One way to assess the prospects for detecting a mono-W signature consists in comparing the
production cross sections of H

± to that of H and A. Using for instance tan � = 1, we find
� (pp ! H

+) ' 1.0 fb for MH± = 500 GeV and � (pp ! H
+) ' 0.2 fb for MH± = 750 GeV

at the 13 TeV LHC. The corresponding cross sections in the case of the heavy neutral spin-0
resonances read � (pp ! H) ' 1.4 pb and � (pp ! A) ' 3.1 pb and � (pp ! H) ' 0.2 pb

and � (pp ! A) ' 0.3 pb, respectively. These numbers strongly suggest that an observation
of a mono-W signal is compared to that of a mono-Z or mono-Higgs signature much less
probable. We thus do not consider the W + ET,miss channel any further.

Let us finally add that besides a simple mono-W signature also Wt + ET,miss and
Wtb + ET,miss signals can appear in the DM model introduced in Section 2. For the rel-
evant charged Higgs production cross sections we find at 13 TeV the results �

�
gb̄ ! H

+
t̄
�
'

0.17 pb (�
�
gb̄ ! H

+
t̄
�
' 0.04 pb) and � (gg ! H

+
t̄b) ' 0.10 pb (� (gg ! H

+
t̄b) ' 0.02 pb)

using tan � = 1 and MH± = 500 GeV (MH± = 750 GeV). Given the small H
± production

cross section in gb and gg fusion, we expect that searches for a Wt+ET,miss or a Wtb+ET,miss

signal will in practice provide no relevant constraint in the small tan � regime.

6 Numerical results

The numerical results of our mono-X analyses are presented in this section. After a brief
description of the signal generation and the background estimates, we first study the impact
of interference effects between the a and A contributions to the j+��̄ and tt̄+��̄ channels.
Then the constraints on the parameter space of the THDM plus pseudoscalar extensions
are derived for several well-motivated benchmark scenarios. In the case of the mono-Z and
mono-Higgs searches we also discuss the LHC Run II reach in some detail.

6.1 Signal generation

The starting point of our MC simulations is a UFO implementation [96] of the simpli-
fied model as described in Section 2. This implementation has been obtained by means
of the FeynRules 2 [97] and NLOCT [98] packages. The generation of the j + ET,miss,
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Source: ArXiv:1701.07427 (M. Bauer, U. Haisch and F. Kahlhoefer).
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function of the LLP mass that are set by the existing LHC searches for displaced Higgs de-
cays [31–47]. It turns out that depending on the precise mass spectrum of the spin-0 states,
mixing angles ✓ from around a few 10�8 to about 10�5 can be excluded with LHC Run II
data. To the best of our knowledge, mixing angles ✓ in this range cannot be tested by any
other means, which highlights the special role that LLPs searches play in constraining the
parameter space of the 2HDM+a model. In fact, as we will further demonstrate, parameter
choices that lead to an interesting LLP phenomenology can in general also correctly predict
the measured DM relic density. The regions of 2HDM+a parameter space singled out in
our article therefore deserve, in our humble opinion, dedicated experimental explorations
in future LHC runs.

This work is structured as follows: in Section 2 we detail the theoretical ingredients
that are relevant in the context of this article. Our general findings concerning the LLP
phenomenology in the 2HDM+a model will be illustrated in Section 3 by considering two
suitable parameter benchmark scenarios as examples. For these two benchmark choices we
derive in Section 4 the constraints that the existing LHC searches for LLPs in displaced
Higgs decays place on the 2HDM+a parameter space. In Section 5 we discuss the resulting
DM phenomenology. Section 6 concludes our work.

2 2HDM+a model primer

In order to understand under which circumstances the additional pseudoscalar a in the
2HDM+a model can be an LLP it is useful to recall its partial decay modes — further
details on the structure of the 2HDM+a model can be found for instance in [4, 9]. In the
alignment limit, i.e. cos (� � ↵) = 0, and choosing for concreteness the Yukawa sector of
the 2HDM+a model to be of type-II, one has at tree level

� (a ! ��̄) =
y
2
�

8⇡
ma

s

1�
4m2

�

m2
a

cos2 ✓ ,

� (a ! ff̄) =
N

f
c ⌘

2
f
y
2
f

16⇡
ma

s

1�
4m2

f

m2
a

sin2 ✓ .

(2.1)
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SM fermion, v ' 246GeV the Higgs vacuum expectation value (VEV) and ↵s the strong
coupling constant. From the analytic expressions (2.1) and (2.2) it is evident that the
pseudoscalar a can only be long-lived if sin ✓ is sufficiently small, i.e. sin ✓ ! 0, and decays to
DM are strongly suppressed/absent which can be achieved either via decoupling, i.e. y� ! 0,
or by forbidding the process kinematically, i.e. m� > ma/2.

Given the strong suppression of the couplings of the pseudoscalar a to SM fermions in
the limit sin ✓ ! 0, the only possibility to produce a long-lived a is via the decay of heavier
spin-0 state � into a pair of such pseudoscalars. In the case that the scalar potential
is CP conserving the � has to be a CP-even state which implies that in the 2HDM+a

model one can have both decays of the 125GeV Higgs h and the heavy CP-even Higgs H.
The corresponding partial decay widths can be written as
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where mh ' 125GeV is the mass of the SM-like Higgs, while �P1 and �P2 are the quartic
couplings that appear in the 2HDM+a scalar potential as follows P 2
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(see for example [4, 9] for the complete expression of the scalar potential). Here P denotes
the additional pseudoscalar in the weak eigenstate basis which satisfies P ' a for sin ✓ ' 0.

The trilinear couplings entering (2.5) can be constrained phenomenologically. In the
case of ghaa one can require that the partial decay width � (h ! aa) does not exceed the
total decay width �h of the 125GeV Higgs as measured directly at the LHC. For ma ⌧ mh

this leads to the inequality [22]
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• Production via the decay of a heavier spin-0 state: 
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SM fermion, v ' 246GeV the Higgs vacuum expectation value (VEV) and ↵s the strong
coupling constant. From the analytic expressions (2.1) and (2.2) it is evident that the
pseudoscalar a can only be long-lived if sin ✓ is sufficiently small, i.e. sin ✓ ! 0, and decays to
DM are strongly suppressed/absent which can be achieved either via decoupling, i.e. y� ! 0,
or by forbidding the process kinematically, i.e. m� > ma/2.

Given the strong suppression of the couplings of the pseudoscalar a to SM fermions in
the limit sin ✓ ! 0, the only possibility to produce a long-lived a is via the decay of heavier
spin-0 state � into a pair of such pseudoscalars. In the case that the scalar potential
is CP conserving the � has to be a CP-even state which implies that in the 2HDM+a
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The corresponding partial decay widths can be written as
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with � = h,H. For sin ✓ ' 0 the relevant trilinear couplings are given by [4]
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where mh ' 125GeV is the mass of the SM-like Higgs, while �P1 and �P2 are the quartic
couplings that appear in the 2HDM+a scalar potential as follows P 2
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(see for example [4, 9] for the complete expression of the scalar potential). Here P denotes
the additional pseudoscalar in the weak eigenstate basis which satisfies P ' a for sin ✓ ' 0.

The trilinear couplings entering (2.5) can be constrained phenomenologically. In the
case of ghaa one can require that the partial decay width � (h ! aa) does not exceed the
total decay width �h of the 125GeV Higgs as measured directly at the LHC. For ma ⌧ mh
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• Production via the decay of a heavier spin-0 state: 
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phenomenology in the 2HDM+a model will be illustrated in Section 3 by considering two
suitable parameter benchmark scenarios as examples. For these two benchmark choices we
derive in Section 4 the constraints that the existing LHC searches for LLPs in displaced
Higgs decays place on the 2HDM+a parameter space. In Section 5 we discuss the resulting
DM phenomenology. Section 6 concludes our work.
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2HDM+a model can be an LLP it is useful to recall its partial decay modes — further
details on the structure of the 2HDM+a model can be found for instance in [4, 9]. In the
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At the one-loop level the pseudoscalar a can also decay to gauge bosons. The largest partial
decay width is the one to gluon pairs. It takes the form
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Here ma is the mass of the pseudoscalar a, m� is the mass of the DM particle, y� is
the Yukawa coupling of the pseudoscalar a to a pair of DM particles and sin ✓ quantifies
the mixing of the two CP-odd weak spin-0 eigenstates. Furthermore, N

q
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– 2 – Figure 1. Examples of tree-level Feynman diagrams representing pp ! aa production via
gluon-gluon-fusion (ggF) Higgs production (left) and pp ! l

+
l
�
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production (right) in the 2HDM+a model. The possible decay modes of the pseudoscalar a are not
shown. Consult the text for further details.

⌘u = cot�, ⌘d = tan�, ⌘l = tan� and yf =
p
2mf/v with mf the mass of the relevant

SM fermion, v ' 246GeV the Higgs vacuum expectation value (VEV) and ↵s the strong
coupling constant. From the analytic expressions (2.1) and (2.2) it is evident that the
pseudoscalar a can only be long-lived if sin ✓ is sufficiently small, i.e. sin ✓ ! 0, and decays to
DM are strongly suppressed/absent which can be achieved either via decoupling, i.e. y� ! 0,
or by forbidding the process kinematically, i.e. m� > ma/2.

Given the strong suppression of the couplings of the pseudoscalar a to SM fermions in
the limit sin ✓ ! 0, the only possibility to produce a long-lived a is via the decay of heavier
spin-0 state � into a pair of such pseudoscalars. In the case that the scalar potential
is CP conserving the � has to be a CP-even state which implies that in the 2HDM+a

model one can have both decays of the 125GeV Higgs h and the heavy CP-even Higgs H.
The corresponding partial decay widths can be written as

� (� ! aa) =
g
2
�aa
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m
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with � = h,H. For sin ✓ ' 0 the relevant trilinear couplings are given by [4]
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�
�
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sin (2�) (�P1 � �P2) ,
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where mh ' 125GeV is the mass of the SM-like Higgs, while �P1 and �P2 are the quartic
couplings that appear in the 2HDM+a scalar potential as follows P 2

�
�P1H

†
1H1+�P2H

†
2H2

�

(see for example [4, 9] for the complete expression of the scalar potential). Here P denotes
the additional pseudoscalar in the weak eigenstate basis which satisfies P ' a for sin ✓ ' 0.

The trilinear couplings entering (2.5) can be constrained phenomenologically. In the
case of ghaa one can require that the partial decay width � (h ! aa) does not exceed the
total decay width �h of the 125GeV Higgs as measured directly at the LHC. For ma ⌧ mh

this leads to the inequality [22]

|ghaa| .
r

32⇡�h

mh

' 0.94 , (2.6)

– 3 –

• Production via the decay of a heavier spin-0 state: 

- Benchmark I: ma < mh/2
- Benchmark II: mh/2 < ma < mH /2

   NLO  
+ QCD  
   corr.

Physical fields:   and .h, H, a, A, H± χ
Physical parameters:  .α, β, θ, v, λ3, λP1, λP2, mh, mH, ma, mA, mH±

: mixing angle for pseudo-scalars ( )θ a, A: mixing angle for scalars ( )α h, H

Source: ArXiv:1802.02156 
(U. Haisch, J.F. Kemenik,  
A. Malinauskas, M. Spira).

Source: ArXiv:2302.02735 (U. Haisch, LS).

https://arxiv.org/pdf/1802.02156.pdf
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SM fermion, v ' 246GeV the Higgs vacuum expectation value (VEV) and ↵s the strong
coupling constant. From the analytic expressions (2.1) and (2.2) it is evident that the
pseudoscalar a can only be long-lived if sin ✓ is sufficiently small, i.e. sin ✓ ! 0, and decays to
DM are strongly suppressed/absent which can be achieved either via decoupling, i.e. y� ! 0,
or by forbidding the process kinematically, i.e. m� > ma/2.

Given the strong suppression of the couplings of the pseudoscalar a to SM fermions in
the limit sin ✓ ! 0, the only possibility to produce a long-lived a is via the decay of heavier
spin-0 state � into a pair of such pseudoscalars. In the case that the scalar potential
is CP conserving the � has to be a CP-even state which implies that in the 2HDM+a

model one can have both decays of the 125GeV Higgs h and the heavy CP-even Higgs H.
The corresponding partial decay widths can be written as
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with � = h,H. For sin ✓ ' 0 the relevant trilinear couplings are given by [4]
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where mh ' 125GeV is the mass of the SM-like Higgs, while �P1 and �P2 are the quartic
couplings that appear in the 2HDM+a scalar potential as follows P 2
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(see for example [4, 9] for the complete expression of the scalar potential). Here P denotes
the additional pseudoscalar in the weak eigenstate basis which satisfies P ' a for sin ✓ ' 0.

The trilinear couplings entering (2.5) can be constrained phenomenologically. In the
case of ghaa one can require that the partial decay width � (h ! aa) does not exceed the
total decay width �h of the 125GeV Higgs as measured directly at the LHC. For ma ⌧ mh

this leads to the inequality [22]
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• Production via the decay of a heavier spin-0 state: 

- Benchmark I: ma < mh/2
- Benchmark II: mh/2 < ma < mH /2

 
(currently )
BR(h → aa) ≃ 2 %

BR(h → inv.) ≲ 9 %

   NLO  
+ QCD  
   corr.

Physical fields:   and .h, H, a, A, H± χ
Physical parameters:  .α, β, θ, v, λ3, λP1, λP2, mh, mH, ma, mA, mH±

: mixing angle for pseudo-scalars ( )θ a, A: mixing angle for scalars ( )α h, H

Source: ArXiv:1802.02156 
(U. Haisch, J.F. Kemenik,  
A. Malinauskas, M. Spira).

Source: ArXiv:2302.02735 (U. Haisch, LS).
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strategy provides strong limits and only those results are presented in this paper.
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Figure 11: Observed limits for (a) Stealth SUSY and (b) �(125) ! ss benchmark samples obtained from the
combination of 2MSVx and 1MSVx+AO strategies.

Table 12: Ranges of mean proper lifetime excluded at 95% CL for scalar boson benchmark models with m� = 125 GeV,
assuming production cross-sections equal to 10% or 1% of the SM Higgs boson production cross-section [80] for the
combination of 2MSVx and 1MSVx+E

miss
T strategies.

�(125) ! ss Excluded c⌧ range [m]
ms [GeV] 10% 1%

5 0.04–10.8 0.1–1.6
8 0.07–15 0.14–3.8
15 0.1–58 0.22–10.8
25 0.2–149 0.4–25
40 0.3–221 0.7–39

Table 12 summarizes the lifetime ranges excluded by the analysis presented in this paper for branching
fractions of 10% and 1% for the scalar boson with m� = 125 GeV decaying into two long-lived scalars.
The results are substantially improved compared to the Run 1 analysis, where for 25 GeV and 40 GeV
long-lived scalar masses the c⌧ ranges excluded for 1% branching fraction were respectively 1.10–5.35 m
and 2.82–7.45 m, while for lower long-lived scalar masses the Run 1 analysis did not have sensitivity at
this level.
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: mixing angle for pseudo-scalars ( )θ a, A: mixing angle for scalars ( )α h, H

https://arxiv.org/pdf/1811.07370.pdf
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The first 2HDM+a benchmark scenario that we will study as an example to illustrate
the possible LLP phenomenology in the 2HDM+a model is:

�
�P1,�P2,m�

 
=
�
2 · 10�3

, 2 · 10�3
, 170GeV

 
, (benchmark I) . (3.3)

We furthermore treat sin ✓ and ma as free parameters but require that ma < mh/2 so that
the LLP can be pair produced in the decay of the 125GeV Higgs boson. The precise value
of the common heavy Higgs mass is irrelevant in such a situation and we simply set it to
mH = 600GeV in benchmark I. Notice that the quartic couplings �P1 and �P2 have been
chosen such that the constraint (2.7) is easily fulfilled. In fact, in the limit ma ! 0 the
benchmark I parameter choices imply

�h = 4.15MeV , (3.4)

a value that is very close to the SM prediction of �SM
h

= 4.07MeV [50]. The corresponding
h ! aa branching ratio is

BR (h ! aa) = 1.9% . (3.5)

The proper decay length of the pseudoscalar a for masses in the range ma 2 [20, 60]GeV

can be approximated by

c⌧a

m
' 4.8 · 10�12

✓
GeV

ma

◆0.9 1

sin2 ✓
, (3.6)

which means that for
sin ✓ ' 4.2 · 10�7

, (3.7)

a pseudoscalar of ma = 40GeV has a proper decay length of around 1m. The result (3.6)
includes higher-order QCD corrections employing the formulas presented in Appendix A
of the paper [51] as implemented in [52]. Also notice that for the choices (3.3) and as-
suming that sin ✓ ' 0, the additional 2HDM Higgses are all narrow, i.e. �H/mH ' 2%,
�A/mA ' 4% and �H±/mH± ' 4%, with BR (H ! tt̄) ' 100%, BR (A ! tt̄) ' 100% and
BR (H± ! tb) ' 100%.

In our second 2HDM+a benchmark scenario that leads to an interesting LLP phe-
nomenology, we consider the following parameter choices

�
�P1,�P2,m�

 
=
�
3, 0, 770GeV

 
, (benchmark II) . (3.8)

The parameters sin ✓, mH and ma are instead treated as input with the requirements that
ma > mh/2 and ma < mH/2 so that the LLP can only be pair produced in the decay
H ! aa of the heavy CP-even Higgs boson H. Notice that the values �P1 and �P2 in (3.8)
satisfy the constraint (2.9). Taking for example mH = 600GeV and ma = 150GeV, the
total decay width of the heavy CP-even Higgs is given by

�H = 22GeV , (3.9)

which implies that �H/mH = 3.7%. The corresponding branching ratios are

BR (H ! aa) = 35% , BR (H ! tt̄) = 65% , (3.10)
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Figure 1. Examples of tree-level Feynman diagrams representing pp ! aa production via
gluon-gluon-fusion (ggF) Higgs production (left) and pp ! l

+
l
�
aa production in associated Zh

production (right) in the 2HDM+a model. The possible decay modes of the pseudoscalar a are not
shown. Consult the text for further details.

⌘u = cot�, ⌘d = tan�, ⌘l = tan� and yf =
p
2mf/v with mf the mass of the relevant

SM fermion, v ' 246GeV the Higgs vacuum expectation value (VEV) and ↵s the strong
coupling constant. From the analytic expressions (2.1) and (2.2) it is evident that the
pseudoscalar a can only be long-lived if sin ✓ is sufficiently small, i.e. sin ✓ ! 0, and decays to
DM are strongly suppressed/absent which can be achieved either via decoupling, i.e. y� ! 0,
or by forbidding the process kinematically, i.e. m� > ma/2.

Given the strong suppression of the couplings of the pseudoscalar a to SM fermions in
the limit sin ✓ ! 0, the only possibility to produce a long-lived a is via the decay of heavier
spin-0 state � into a pair of such pseudoscalars. In the case that the scalar potential
is CP conserving the � has to be a CP-even state which implies that in the 2HDM+a

model one can have both decays of the 125GeV Higgs h and the heavy CP-even Higgs H.
The corresponding partial decay widths can be written as

� (� ! aa) =
g
2
�aa

32⇡
m�

s
1� 4m2

a

m
2
�

, (2.4)

with � = h,H. For sin ✓ ' 0 the relevant trilinear couplings are given by [4]

ghaa ' � 2v

mh

�
�P1 cos

2
� + �P2 sin

2
�
�
,

gHaa ' v

mH

sin (2�) (�P1 � �P2) ,

(2.5)

where mh ' 125GeV is the mass of the SM-like Higgs, while �P1 and �P2 are the quartic
couplings that appear in the 2HDM+a scalar potential as follows P 2

�
�P1H

†
1H1+�P2H

†
2H2

�

(see for example [4, 9] for the complete expression of the scalar potential). Here P denotes
the additional pseudoscalar in the weak eigenstate basis which satisfies P ' a for sin ✓ ' 0.

The trilinear couplings entering (2.5) can be constrained phenomenologically. In the
case of ghaa one can require that the partial decay width � (h ! aa) does not exceed the
total decay width �h of the 125GeV Higgs as measured directly at the LHC. For ma ⌧ mh

this leads to the inequality [22]

|ghaa| .
r

32⇡�h

mh

' 0.94 , (2.6)
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Physical fields:   and .h, H, a, A, H± χ
Physical parameters:  .α, β, θ, v, λ3, λP1, λP2, mh, mH, ma, mA, mH±

: mixing angle for pseudo-scalars ( )θ a, A: mixing angle for scalars ( )α h, H
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this paper was found to be not optimal due to a large contamination by signal events in the VR or small
signal–background separation for one of the variables of the ABCD plane. For those samples, the 2MSVx
strategy provides strong limits and only those results are presented in this paper.
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Figure 11: Observed limits for (a) Stealth SUSY and (b) �(125) ! ss benchmark samples obtained from the
combination of 2MSVx and 1MSVx+AO strategies.

Table 12: Ranges of mean proper lifetime excluded at 95% CL for scalar boson benchmark models with m� = 125 GeV,
assuming production cross-sections equal to 10% or 1% of the SM Higgs boson production cross-section [80] for the
combination of 2MSVx and 1MSVx+E

miss
T strategies.

�(125) ! ss Excluded c⌧ range [m]
ms [GeV] 10% 1%

5 0.04–10.8 0.1–1.6
8 0.07–15 0.14–3.8
15 0.1–58 0.22–10.8
25 0.2–149 0.4–25
40 0.3–221 0.7–39

Table 12 summarizes the lifetime ranges excluded by the analysis presented in this paper for branching
fractions of 10% and 1% for the scalar boson with m� = 125 GeV decaying into two long-lived scalars.
The results are substantially improved compared to the Run 1 analysis, where for 25 GeV and 40 GeV
long-lived scalar masses the c⌧ ranges excluded for 1% branching fraction were respectively 1.10–5.35 m
and 2.82–7.45 m, while for lower long-lived scalar masses the Run 1 analysis did not have sensitivity at
this level.
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Source: ArXiv:1811.07370 (ATLAS).

The first 2HDM+a benchmark scenario that we will study as an example to illustrate
the possible LLP phenomenology in the 2HDM+a model is:

�
�P1,�P2,m�

 
=
�
2 · 10�3

, 2 · 10�3
, 170GeV

 
, (benchmark I) . (3.3)

We furthermore treat sin ✓ and ma as free parameters but require that ma < mh/2 so that
the LLP can be pair produced in the decay of the 125GeV Higgs boson. The precise value
of the common heavy Higgs mass is irrelevant in such a situation and we simply set it to
mH = 600GeV in benchmark I. Notice that the quartic couplings �P1 and �P2 have been
chosen such that the constraint (2.7) is easily fulfilled. In fact, in the limit ma ! 0 the
benchmark I parameter choices imply

�h = 4.15MeV , (3.4)

a value that is very close to the SM prediction of �SM
h

= 4.07MeV [50]. The corresponding
h ! aa branching ratio is

BR (h ! aa) = 1.9% . (3.5)

The proper decay length of the pseudoscalar a for masses in the range ma 2 [20, 60]GeV

can be approximated by

c⌧a

m
' 4.8 · 10�12

✓
GeV

ma

◆0.9 1

sin2 ✓
, (3.6)

which means that for
sin ✓ ' 4.2 · 10�7

, (3.7)

a pseudoscalar of ma = 40GeV has a proper decay length of around 1m. The result (3.6)
includes higher-order QCD corrections employing the formulas presented in Appendix A
of the paper [51] as implemented in [52]. Also notice that for the choices (3.3) and as-
suming that sin ✓ ' 0, the additional 2HDM Higgses are all narrow, i.e. �H/mH ' 2%,
�A/mA ' 4% and �H±/mH± ' 4%, with BR (H ! tt̄) ' 100%, BR (A ! tt̄) ' 100% and
BR (H± ! tb) ' 100%.

In our second 2HDM+a benchmark scenario that leads to an interesting LLP phe-
nomenology, we consider the following parameter choices

�
�P1,�P2,m�

 
=
�
3, 0, 770GeV

 
, (benchmark II) . (3.8)

The parameters sin ✓, mH and ma are instead treated as input with the requirements that
ma > mh/2 and ma < mH/2 so that the LLP can only be pair produced in the decay
H ! aa of the heavy CP-even Higgs boson H. Notice that the values �P1 and �P2 in (3.8)
satisfy the constraint (2.9). Taking for example mH = 600GeV and ma = 150GeV, the
total decay width of the heavy CP-even Higgs is given by

�H = 22GeV , (3.9)

which implies that �H/mH = 3.7%. The corresponding branching ratios are

BR (H ! aa) = 35% , BR (H ! tt̄) = 65% , (3.10)
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Figure 2. 95% CL exclusion regions in the ma– sin ✓ plane for the 2HDM+a benchmark I
scenario (3.3). The dotted red, blue, green and purple lines correspond to the limits following from
the ATLAS searches [33, 34], [35], [43] and [44], respectively. The dashed yellow curves instead
represent the bound that arises from the CMS search [38]. The parameter space between the lines
is disfavoured. See main text for further details.

muon endcap and 137 fb�1 of
p
s = 13TeV data. From the figure it is evident that in

the 2HDM+a benchmark I scenario the existing LHC searches for displaced Higgs decays
to hadronic jets allow to exclude values of sin ✓ between around 10�7 and 10�5 with the
exact bound depending on the mass of the pseudoscalar a. The excluded parameter space
corresponds to proper decay lengths c⌧a in the range from around 59m to 0.08m. Notice
that given the smallness of the h ! aa branching ratio

�
cf. (3.5)

�
, our benchmark I scenario

easily evades the present bounds on the undetected or invisible branching ratios of the
125GeV Higgs [53] that amount to 19% and 9%, respectively. In fact, even a possible
future high-luminosity LHC (HL-LHC) upper limit on the invisible branching ratio of the
SM-like Higgs of BR (h ! invisible) < 2.5% [54] would not be stringent enough to test (3.3)
indirectly. This feature underlines the special role that LLP searches for displaced Higgs
decays can play in testing 2HDM+a models with mixing angles ✓ close to zero.

Let us now turn our attention to the benchmark II scenario (3.8). In this case the
parameters are chosen such that an LLP signal may arise from the prompt decay of the
heavy CP-even Higgs, i.e H ! aa, followed by the displaced decays of the pseudoscalars to
a pair of SM fermions a ! ff̄ or gluons a ! gg. Given our choice of Yukawa sector and
tan�, the a dominantly decays to the heaviest SM fermion, which means that depending on
the precise value of its mass either a ! bb̄ or a ! tt̄ provide the largest rate. To illustrate
these two possibilities we consider in benchmark II the mass combination mH = 600GeV

– 7 –

Source: ArXiv:2302.02735 (U. Haisch, LS).

Figure 1. Examples of tree-level Feynman diagrams representing pp ! aa production via
gluon-gluon-fusion (ggF) Higgs production (left) and pp ! l

+
l
�
aa production in associated Zh

production (right) in the 2HDM+a model. The possible decay modes of the pseudoscalar a are not
shown. Consult the text for further details.

⌘u = cot�, ⌘d = tan�, ⌘l = tan� and yf =
p
2mf/v with mf the mass of the relevant

SM fermion, v ' 246GeV the Higgs vacuum expectation value (VEV) and ↵s the strong
coupling constant. From the analytic expressions (2.1) and (2.2) it is evident that the
pseudoscalar a can only be long-lived if sin ✓ is sufficiently small, i.e. sin ✓ ! 0, and decays to
DM are strongly suppressed/absent which can be achieved either via decoupling, i.e. y� ! 0,
or by forbidding the process kinematically, i.e. m� > ma/2.

Given the strong suppression of the couplings of the pseudoscalar a to SM fermions in
the limit sin ✓ ! 0, the only possibility to produce a long-lived a is via the decay of heavier
spin-0 state � into a pair of such pseudoscalars. In the case that the scalar potential
is CP conserving the � has to be a CP-even state which implies that in the 2HDM+a

model one can have both decays of the 125GeV Higgs h and the heavy CP-even Higgs H.
The corresponding partial decay widths can be written as

� (� ! aa) =
g
2
�aa

32⇡
m�

s
1� 4m2

a

m
2
�

, (2.4)

with � = h,H. For sin ✓ ' 0 the relevant trilinear couplings are given by [4]

ghaa ' � 2v

mh

�
�P1 cos

2
� + �P2 sin

2
�
�
,

gHaa ' v

mH

sin (2�) (�P1 � �P2) ,

(2.5)

where mh ' 125GeV is the mass of the SM-like Higgs, while �P1 and �P2 are the quartic
couplings that appear in the 2HDM+a scalar potential as follows P 2

�
�P1H

†
1H1+�P2H

†
2H2

�

(see for example [4, 9] for the complete expression of the scalar potential). Here P denotes
the additional pseudoscalar in the weak eigenstate basis which satisfies P ' a for sin ✓ ' 0.

The trilinear couplings entering (2.5) can be constrained phenomenologically. In the
case of ghaa one can require that the partial decay width � (h ! aa) does not exceed the
total decay width �h of the 125GeV Higgs as measured directly at the LHC. For ma ⌧ mh

this leads to the inequality [22]

|ghaa| .
r

32⇡�h

mh

' 0.94 , (2.6)
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Physical fields:   and .h, H, a, A, H± χ
Physical parameters:  .α, β, θ, v, λ3, λP1, λP2, mh, mH, ma, mA, mH±

: mixing angle for pseudo-scalars ( )θ a, A: mixing angle for scalars ( )α h, H

https://arxiv.org/pdf/1811.07370.pdf
https://arxiv.org/pdf/2302.02735.pdf


2. LLP Phenomenology

9

2.2 LLP constraints

ATLAS ggF CM & MS, 36 fb-1

ATLAS ggF ID & MS, 33 fb-1

ATLAS ggF MS, 139 fb-1

ATLAS ggF CM, 139 fb-1

CMS ggF MS, 137 fb-1

10 20 30 40 50
10-8

10-7

10-6

10-5

10-4

ma [GeV]
si
n
θ

Benchmark I

Figure 2. 95% CL exclusion regions in the ma– sin ✓ plane for the 2HDM+a benchmark I
scenario (3.3). The dotted red, blue, green and purple lines correspond to the limits following from
the ATLAS searches [33, 34], [35], [43] and [44], respectively. The dashed yellow curves instead
represent the bound that arises from the CMS search [38]. The parameter space between the lines
is disfavoured. See main text for further details.

muon endcap and 137 fb�1 of
p
s = 13TeV data. From the figure it is evident that in

the 2HDM+a benchmark I scenario the existing LHC searches for displaced Higgs decays
to hadronic jets allow to exclude values of sin ✓ between around 10�7 and 10�5 with the
exact bound depending on the mass of the pseudoscalar a. The excluded parameter space
corresponds to proper decay lengths c⌧a in the range from around 59m to 0.08m. Notice
that given the smallness of the h ! aa branching ratio

�
cf. (3.5)

�
, our benchmark I scenario

easily evades the present bounds on the undetected or invisible branching ratios of the
125GeV Higgs [53] that amount to 19% and 9%, respectively. In fact, even a possible
future high-luminosity LHC (HL-LHC) upper limit on the invisible branching ratio of the
SM-like Higgs of BR (h ! invisible) < 2.5% [54] would not be stringent enough to test (3.3)
indirectly. This feature underlines the special role that LLP searches for displaced Higgs
decays can play in testing 2HDM+a models with mixing angles ✓ close to zero.

Let us now turn our attention to the benchmark II scenario (3.8). In this case the
parameters are chosen such that an LLP signal may arise from the prompt decay of the
heavy CP-even Higgs, i.e H ! aa, followed by the displaced decays of the pseudoscalars to
a pair of SM fermions a ! ff̄ or gluons a ! gg. Given our choice of Yukawa sector and
tan�, the a dominantly decays to the heaviest SM fermion, which means that depending on
the precise value of its mass either a ! bb̄ or a ! tt̄ provide the largest rate. To illustrate
these two possibilities we consider in benchmark II the mass combination mH = 600GeV
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Source: ArXiv:2302.02735 
(U. Haisch, LS).
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scenario (3.3). The dotted red, blue, green and purple lines correspond to the limits following from
the ATLAS searches [33, 34], [35], [43] and [44], respectively. The dashed yellow curves instead
represent the bound that arises from the CMS search [38]. The parameter space between the lines
is disfavoured. See main text for further details.

muon endcap and 137 fb�1 of
p
s = 13TeV data. From the figure it is evident that in

the 2HDM+a benchmark I scenario the existing LHC searches for displaced Higgs decays
to hadronic jets allow to exclude values of sin ✓ between around 10�7 and 10�5 with the
exact bound depending on the mass of the pseudoscalar a. The excluded parameter space
corresponds to proper decay lengths c⌧a in the range from around 59m to 0.08m. Notice
that given the smallness of the h ! aa branching ratio
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cf. (3.5)
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, our benchmark I scenario

easily evades the present bounds on the undetected or invisible branching ratios of the
125GeV Higgs [53] that amount to 19% and 9%, respectively. In fact, even a possible
future high-luminosity LHC (HL-LHC) upper limit on the invisible branching ratio of the
SM-like Higgs of BR (h ! invisible) < 2.5% [54] would not be stringent enough to test (3.3)
indirectly. This feature underlines the special role that LLP searches for displaced Higgs
decays can play in testing 2HDM+a models with mixing angles ✓ close to zero.

Let us now turn our attention to the benchmark II scenario (3.8). In this case the
parameters are chosen such that an LLP signal may arise from the prompt decay of the
heavy CP-even Higgs, i.e H ! aa, followed by the displaced decays of the pseudoscalars to
a pair of SM fermions a ! ff̄ or gluons a ! gg. Given our choice of Yukawa sector and
tan�, the a dominantly decays to the heaviest SM fermion, which means that depending on
the precise value of its mass either a ! bb̄ or a ! tt̄ provide the largest rate. To illustrate
these two possibilities we consider in benchmark II the mass combination mH = 600GeV
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Table 1: Topologies considered in this paper, corresponding basic event selection and benchmark models.

Strategy Basic event selection Benchmarks

2MSVx At least 2 MS vertices Scalar portal, Higgs portal baryogenesis,
Stealth SUSY

1MSVx+Jets Exactly 1 MS vertex Stealth SUSYAt least 2 jets with ET > 150 GeV

1MSVx+E
miss
T

Exactly 1 MS vertex Scalar portal with m� = 125 GeV,
E

miss
T > 30 GeV Higgs portal baryogenesis

machine-induced background [39]. This last contribution, usually referred to as beam-induced background,
is composed of particles produced in the hadronic and electromagnetic showers caused by beam protons
interacting with collimators or residual gas molecules inside the vacuum pipe.

To avoid unintended biasing of the results, the signal regions of the 2MSVx and 1MSVx+AO strategies
were blinded during the analysis development.

4 Description of benchmark models

Although the event selections outlined in Section 3 are sensitive to a large variety of models, this paper
interprets the results in terms of three di�erent benchmark models. The first, shown in Figure 1(a), is a
scalar portal model [14], where a SM-like Higgs or lower/higher-mass boson (�) decays into two long-lived
scalars (s). Figure 1(b) shows the second model, Higgs portal baryogenesis [20], in which a SM-like Higgs
boson (h) decays into long-lived Majorana fermions � that decay into fermions, violating baryon and/or
lepton number conservation. The last model, shown in Figure 1(c), is a Stealth SUSY model [7, 8] where
the long-lived singlino (S̃) is produced by a gluino (g̃) in association with a prompt gluon-jet (g). The
singlino decay produces two gluons and a light gravitino.

�
s

s

p

p f

f̄

f̄

f

(a)

h

�

�

p

p

f

f
f

f
f

f

(b) (c)

Figure 1: Diagrams of the benchmark models studied in this paper: (a) scalar portal model, (b) Higgs portal
baryogenesis model, and (c) Stealth SUSY model. The LLPs in these processes are represented by double lines and
labeled (a) s, (b) �, and (c) S̃. In the Stealth SUSY model, G̃ is the gravitino and S is the singlet. The final-state SM
fermions are labeled as f , and the gluons as g.

The decay channels, the relative masses and lifetimes generated for each model, as well as details about the
Monte Carlo (MC) event generation are described in Section 5.
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the ATLAS searches [33, 34], [35], [43] and [44], respectively. The dashed yellow curves instead
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is disfavoured. See main text for further details.
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the 2HDM+a benchmark I scenario the existing LHC searches for displaced Higgs decays
to hadronic jets allow to exclude values of sin ✓ between around 10�7 and 10�5 with the
exact bound depending on the mass of the pseudoscalar a. The excluded parameter space
corresponds to proper decay lengths c⌧a in the range from around 59m to 0.08m. Notice
that given the smallness of the h ! aa branching ratio
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easily evades the present bounds on the undetected or invisible branching ratios of the
125GeV Higgs [53] that amount to 19% and 9%, respectively. In fact, even a possible
future high-luminosity LHC (HL-LHC) upper limit on the invisible branching ratio of the
SM-like Higgs of BR (h ! invisible) < 2.5% [54] would not be stringent enough to test (3.3)
indirectly. This feature underlines the special role that LLP searches for displaced Higgs
decays can play in testing 2HDM+a models with mixing angles ✓ close to zero.

Let us now turn our attention to the benchmark II scenario (3.8). In this case the
parameters are chosen such that an LLP signal may arise from the prompt decay of the
heavy CP-even Higgs, i.e H ! aa, followed by the displaced decays of the pseudoscalars to
a pair of SM fermions a ! ff̄ or gluons a ! gg. Given our choice of Yukawa sector and
tan�, the a dominantly decays to the heaviest SM fermion, which means that depending on
the precise value of its mass either a ! bb̄ or a ! tt̄ provide the largest rate. To illustrate
these two possibilities we consider in benchmark II the mass combination mH = 600GeV
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Table 1: Topologies considered in this paper, corresponding basic event selection and benchmark models.

Strategy Basic event selection Benchmarks
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machine-induced background [39]. This last contribution, usually referred to as beam-induced background,
is composed of particles produced in the hadronic and electromagnetic showers caused by beam protons
interacting with collimators or residual gas molecules inside the vacuum pipe.

To avoid unintended biasing of the results, the signal regions of the 2MSVx and 1MSVx+AO strategies
were blinded during the analysis development.

4 Description of benchmark models

Although the event selections outlined in Section 3 are sensitive to a large variety of models, this paper
interprets the results in terms of three di�erent benchmark models. The first, shown in Figure 1(a), is a
scalar portal model [14], where a SM-like Higgs or lower/higher-mass boson (�) decays into two long-lived
scalars (s). Figure 1(b) shows the second model, Higgs portal baryogenesis [20], in which a SM-like Higgs
boson (h) decays into long-lived Majorana fermions � that decay into fermions, violating baryon and/or
lepton number conservation. The last model, shown in Figure 1(c), is a Stealth SUSY model [7, 8] where
the long-lived singlino (S̃) is produced by a gluino (g̃) in association with a prompt gluon-jet (g). The
singlino decay produces two gluons and a light gravitino.
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The decay channels, the relative masses and lifetimes generated for each model, as well as details about the
Monte Carlo (MC) event generation are described in Section 5.
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Figure 2. 95% CL exclusion regions in the ma– sin ✓ plane for the 2HDM+a benchmark I
scenario (3.3). The dotted red, blue, green and purple lines correspond to the limits following from
the ATLAS searches [33, 34], [35], [43] and [44], respectively. The dashed yellow curves instead
represent the bound that arises from the CMS search [38]. The parameter space between the lines
is disfavoured. See main text for further details.

muon endcap and 137 fb�1 of
p
s = 13TeV data. From the figure it is evident that in

the 2HDM+a benchmark I scenario the existing LHC searches for displaced Higgs decays
to hadronic jets allow to exclude values of sin ✓ between around 10�7 and 10�5 with the
exact bound depending on the mass of the pseudoscalar a. The excluded parameter space
corresponds to proper decay lengths c⌧a in the range from around 59m to 0.08m. Notice
that given the smallness of the h ! aa branching ratio

�
cf. (3.5)

�
, our benchmark I scenario

easily evades the present bounds on the undetected or invisible branching ratios of the
125GeV Higgs [53] that amount to 19% and 9%, respectively. In fact, even a possible
future high-luminosity LHC (HL-LHC) upper limit on the invisible branching ratio of the
SM-like Higgs of BR (h ! invisible) < 2.5% [54] would not be stringent enough to test (3.3)
indirectly. This feature underlines the special role that LLP searches for displaced Higgs
decays can play in testing 2HDM+a models with mixing angles ✓ close to zero.

Let us now turn our attention to the benchmark II scenario (3.8). In this case the
parameters are chosen such that an LLP signal may arise from the prompt decay of the
heavy CP-even Higgs, i.e H ! aa, followed by the displaced decays of the pseudoscalars to
a pair of SM fermions a ! ff̄ or gluons a ! gg. Given our choice of Yukawa sector and
tan�, the a dominantly decays to the heaviest SM fermion, which means that depending on
the precise value of its mass either a ! bb̄ or a ! tt̄ provide the largest rate. To illustrate
these two possibilities we consider in benchmark II the mass combination mH = 600GeV
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Table 1: Topologies considered in this paper, corresponding basic event selection and benchmark models.

Strategy Basic event selection Benchmarks

2MSVx At least 2 MS vertices Scalar portal, Higgs portal baryogenesis,
Stealth SUSY

1MSVx+Jets Exactly 1 MS vertex Stealth SUSYAt least 2 jets with ET > 150 GeV

1MSVx+E
miss
T

Exactly 1 MS vertex Scalar portal with m� = 125 GeV,
E

miss
T > 30 GeV Higgs portal baryogenesis

machine-induced background [39]. This last contribution, usually referred to as beam-induced background,
is composed of particles produced in the hadronic and electromagnetic showers caused by beam protons
interacting with collimators or residual gas molecules inside the vacuum pipe.

To avoid unintended biasing of the results, the signal regions of the 2MSVx and 1MSVx+AO strategies
were blinded during the analysis development.

4 Description of benchmark models

Although the event selections outlined in Section 3 are sensitive to a large variety of models, this paper
interprets the results in terms of three di�erent benchmark models. The first, shown in Figure 1(a), is a
scalar portal model [14], where a SM-like Higgs or lower/higher-mass boson (�) decays into two long-lived
scalars (s). Figure 1(b) shows the second model, Higgs portal baryogenesis [20], in which a SM-like Higgs
boson (h) decays into long-lived Majorana fermions � that decay into fermions, violating baryon and/or
lepton number conservation. The last model, shown in Figure 1(c), is a Stealth SUSY model [7, 8] where
the long-lived singlino (S̃) is produced by a gluino (g̃) in association with a prompt gluon-jet (g). The
singlino decay produces two gluons and a light gravitino.
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Figure 1: Diagrams of the benchmark models studied in this paper: (a) scalar portal model, (b) Higgs portal
baryogenesis model, and (c) Stealth SUSY model. The LLPs in these processes are represented by double lines and
labeled (a) s, (b) �, and (c) S̃. In the Stealth SUSY model, G̃ is the gravitino and S is the singlet. The final-state SM
fermions are labeled as f , and the gluons as g.

The decay channels, the relative masses and lifetimes generated for each model, as well as details about the
Monte Carlo (MC) event generation are described in Section 5.
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Figure 2. 95% CL exclusion regions in the ma– sin ✓ plane for the 2HDM+a benchmark I
scenario (3.3). The dotted red, blue, green and purple lines correspond to the limits following from
the ATLAS searches [33, 34], [35], [43] and [44], respectively. The dashed yellow curves instead
represent the bound that arises from the CMS search [38]. The parameter space between the lines
is disfavoured. See main text for further details.
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exact bound depending on the mass of the pseudoscalar a. The excluded parameter space
corresponds to proper decay lengths c⌧a in the range from around 59m to 0.08m. Notice
that given the smallness of the h ! aa branching ratio
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, our benchmark I scenario

easily evades the present bounds on the undetected or invisible branching ratios of the
125GeV Higgs [53] that amount to 19% and 9%, respectively. In fact, even a possible
future high-luminosity LHC (HL-LHC) upper limit on the invisible branching ratio of the
SM-like Higgs of BR (h ! invisible) < 2.5% [54] would not be stringent enough to test (3.3)
indirectly. This feature underlines the special role that LLP searches for displaced Higgs
decays can play in testing 2HDM+a models with mixing angles ✓ close to zero.

Let us now turn our attention to the benchmark II scenario (3.8). In this case the
parameters are chosen such that an LLP signal may arise from the prompt decay of the
heavy CP-even Higgs, i.e H ! aa, followed by the displaced decays of the pseudoscalars to
a pair of SM fermions a ! ff̄ or gluons a ! gg. Given our choice of Yukawa sector and
tan�, the a dominantly decays to the heaviest SM fermion, which means that depending on
the precise value of its mass either a ! bb̄ or a ! tt̄ provide the largest rate. To illustrate
these two possibilities we consider in benchmark II the mass combination mH = 600GeV
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Exactly 1 MS vertex Scalar portal with m� = 125 GeV,
E

miss
T > 30 GeV Higgs portal baryogenesis

machine-induced background [39]. This last contribution, usually referred to as beam-induced background,
is composed of particles produced in the hadronic and electromagnetic showers caused by beam protons
interacting with collimators or residual gas molecules inside the vacuum pipe.

To avoid unintended biasing of the results, the signal regions of the 2MSVx and 1MSVx+AO strategies
were blinded during the analysis development.

4 Description of benchmark models

Although the event selections outlined in Section 3 are sensitive to a large variety of models, this paper
interprets the results in terms of three di�erent benchmark models. The first, shown in Figure 1(a), is a
scalar portal model [14], where a SM-like Higgs or lower/higher-mass boson (�) decays into two long-lived
scalars (s). Figure 1(b) shows the second model, Higgs portal baryogenesis [20], in which a SM-like Higgs
boson (h) decays into long-lived Majorana fermions � that decay into fermions, violating baryon and/or
lepton number conservation. The last model, shown in Figure 1(c), is a Stealth SUSY model [7, 8] where
the long-lived singlino (S̃) is produced by a gluino (g̃) in association with a prompt gluon-jet (g). The
singlino decay produces two gluons and a light gravitino.
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Figure 1: Diagrams of the benchmark models studied in this paper: (a) scalar portal model, (b) Higgs portal
baryogenesis model, and (c) Stealth SUSY model. The LLPs in these processes are represented by double lines and
labeled (a) s, (b) �, and (c) S̃. In the Stealth SUSY model, G̃ is the gravitino and S is the singlet. The final-state SM
fermions are labeled as f , and the gluons as g.

The decay channels, the relative masses and lifetimes generated for each model, as well as details about the
Monte Carlo (MC) event generation are described in Section 5.
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Figure 2. 95% CL exclusion regions in the ma– sin ✓ plane for the 2HDM+a benchmark I
scenario (3.3). The dotted red, blue, green and purple lines correspond to the limits following from
the ATLAS searches [33, 34], [35], [43] and [44], respectively. The dashed yellow curves instead
represent the bound that arises from the CMS search [38]. The parameter space between the lines
is disfavoured. See main text for further details.
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p
s = 13TeV data. From the figure it is evident that in

the 2HDM+a benchmark I scenario the existing LHC searches for displaced Higgs decays
to hadronic jets allow to exclude values of sin ✓ between around 10�7 and 10�5 with the
exact bound depending on the mass of the pseudoscalar a. The excluded parameter space
corresponds to proper decay lengths c⌧a in the range from around 59m to 0.08m. Notice
that given the smallness of the h ! aa branching ratio
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, our benchmark I scenario

easily evades the present bounds on the undetected or invisible branching ratios of the
125GeV Higgs [53] that amount to 19% and 9%, respectively. In fact, even a possible
future high-luminosity LHC (HL-LHC) upper limit on the invisible branching ratio of the
SM-like Higgs of BR (h ! invisible) < 2.5% [54] would not be stringent enough to test (3.3)
indirectly. This feature underlines the special role that LLP searches for displaced Higgs
decays can play in testing 2HDM+a models with mixing angles ✓ close to zero.

Let us now turn our attention to the benchmark II scenario (3.8). In this case the
parameters are chosen such that an LLP signal may arise from the prompt decay of the
heavy CP-even Higgs, i.e H ! aa, followed by the displaced decays of the pseudoscalars to
a pair of SM fermions a ! ff̄ or gluons a ! gg. Given our choice of Yukawa sector and
tan�, the a dominantly decays to the heaviest SM fermion, which means that depending on
the precise value of its mass either a ! bb̄ or a ! tt̄ provide the largest rate. To illustrate
these two possibilities we consider in benchmark II the mass combination mH = 600GeV
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Table 1: Topologies considered in this paper, corresponding basic event selection and benchmark models.
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1MSVx+E
miss
T

Exactly 1 MS vertex Scalar portal with m� = 125 GeV,
E

miss
T > 30 GeV Higgs portal baryogenesis

machine-induced background [39]. This last contribution, usually referred to as beam-induced background,
is composed of particles produced in the hadronic and electromagnetic showers caused by beam protons
interacting with collimators or residual gas molecules inside the vacuum pipe.

To avoid unintended biasing of the results, the signal regions of the 2MSVx and 1MSVx+AO strategies
were blinded during the analysis development.

4 Description of benchmark models

Although the event selections outlined in Section 3 are sensitive to a large variety of models, this paper
interprets the results in terms of three di�erent benchmark models. The first, shown in Figure 1(a), is a
scalar portal model [14], where a SM-like Higgs or lower/higher-mass boson (�) decays into two long-lived
scalars (s). Figure 1(b) shows the second model, Higgs portal baryogenesis [20], in which a SM-like Higgs
boson (h) decays into long-lived Majorana fermions � that decay into fermions, violating baryon and/or
lepton number conservation. The last model, shown in Figure 1(c), is a Stealth SUSY model [7, 8] where
the long-lived singlino (S̃) is produced by a gluino (g̃) in association with a prompt gluon-jet (g). The
singlino decay produces two gluons and a light gravitino.
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Figure 1: Diagrams of the benchmark models studied in this paper: (a) scalar portal model, (b) Higgs portal
baryogenesis model, and (c) Stealth SUSY model. The LLPs in these processes are represented by double lines and
labeled (a) s, (b) �, and (c) S̃. In the Stealth SUSY model, G̃ is the gravitino and S is the singlet. The final-state SM
fermions are labeled as f , and the gluons as g.

The decay channels, the relative masses and lifetimes generated for each model, as well as details about the
Monte Carlo (MC) event generation are described in Section 5.
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Figure 3. As Figure 2 but for the two 2HDM+a benchmark II scenarios (3.8). The upper (lower)
panel depicts the results for mH = 600GeV (mH = 1000GeV). The dotted red, blue, green and
purple lines in the upper panel correspond to the bounds following from [33, 34], [35], [43] and [44],
respectively. The dotted red exclusion in the lower panel instead represents the combination of
the ATLAS searches [33, 34, 43, 44]. The shaded parameter regions are disfavoured. Further
explanations can be found in the main text.
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Figure 1. Examples of tree-level Feynman diagrams representing pp ! aa production via
gluon-gluon-fusion (ggF) Higgs production (left) and pp ! l

+
l
�
aa production in associated Zh

production (right) in the 2HDM+a model. The possible decay modes of the pseudoscalar a are not
shown. Consult the text for further details.

⌘u = cot�, ⌘d = tan�, ⌘l = tan� and yf =
p
2mf/v with mf the mass of the relevant

SM fermion, v ' 246GeV the Higgs vacuum expectation value (VEV) and ↵s the strong
coupling constant. From the analytic expressions (2.1) and (2.2) it is evident that the
pseudoscalar a can only be long-lived if sin ✓ is sufficiently small, i.e. sin ✓ ! 0, and decays to
DM are strongly suppressed/absent which can be achieved either via decoupling, i.e. y� ! 0,
or by forbidding the process kinematically, i.e. m� > ma/2.

Given the strong suppression of the couplings of the pseudoscalar a to SM fermions in
the limit sin ✓ ! 0, the only possibility to produce a long-lived a is via the decay of heavier
spin-0 state � into a pair of such pseudoscalars. In the case that the scalar potential
is CP conserving the � has to be a CP-even state which implies that in the 2HDM+a

model one can have both decays of the 125GeV Higgs h and the heavy CP-even Higgs H.
The corresponding partial decay widths can be written as

� (� ! aa) =
g
2
�aa

32⇡
m�

s
1� 4m2

a

m
2
�

, (2.4)

with � = h,H. For sin ✓ ' 0 the relevant trilinear couplings are given by [4]

ghaa ' � 2v

mh

�
�P1 cos

2
� + �P2 sin

2
�
�
,

gHaa ' v

mH

sin (2�) (�P1 � �P2) ,

(2.5)

where mh ' 125GeV is the mass of the SM-like Higgs, while �P1 and �P2 are the quartic
couplings that appear in the 2HDM+a scalar potential as follows P 2

�
�P1H

†
1H1+�P2H

†
2H2

�

(see for example [4, 9] for the complete expression of the scalar potential). Here P denotes
the additional pseudoscalar in the weak eigenstate basis which satisfies P ' a for sin ✓ ' 0.

The trilinear couplings entering (2.5) can be constrained phenomenologically. In the
case of ghaa one can require that the partial decay width � (h ! aa) does not exceed the
total decay width �h of the 125GeV Higgs as measured directly at the LHC. For ma ⌧ mh

this leads to the inequality [22]

|ghaa| .
r

32⇡�h

mh

' 0.94 , (2.6)
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function of the LLP mass that are set by the existing LHC searches for displaced Higgs de-
cays [31–47]. It turns out that depending on the precise mass spectrum of the spin-0 states,
mixing angles ✓ from around a few 10�8 to about 10�5 can be excluded with LHC Run II
data. To the best of our knowledge, mixing angles ✓ in this range cannot be tested by any
other means, which highlights the special role that LLPs searches play in constraining the
parameter space of the 2HDM+a model. In fact, as we will further demonstrate, parameter
choices that lead to an interesting LLP phenomenology can in general also correctly predict
the measured DM relic density. The regions of 2HDM+a parameter space singled out in
our article therefore deserve, in our humble opinion, dedicated experimental explorations
in future LHC runs.

This work is structured as follows: in Section 2 we detail the theoretical ingredients
that are relevant in the context of this article. Our general findings concerning the LLP
phenomenology in the 2HDM+a model will be illustrated in Section 3 by considering two
suitable parameter benchmark scenarios as examples. For these two benchmark choices we
derive in Section 4 the constraints that the existing LHC searches for LLPs in displaced
Higgs decays place on the 2HDM+a parameter space. In Section 5 we discuss the resulting
DM phenomenology. Section 6 concludes our work.

2 2HDM+a model primer

In order to understand under which circumstances the additional pseudoscalar a in the
2HDM+a model can be an LLP it is useful to recall its partial decay modes — further
details on the structure of the 2HDM+a model can be found for instance in [4, 9]. In the
alignment limit, i.e. cos (� � ↵) = 0, and choosing for concreteness the Yukawa sector of
the 2HDM+a model to be of type-II, one has at tree level
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At the one-loop level the pseudoscalar a can also decay to gauge bosons. The largest partial
decay width is the one to gluon pairs. It takes the form

� (a ! gg) =
↵
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s
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with
f(z) = z arctan2

✓
1p
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◆
. (2.3)

Here ma is the mass of the pseudoscalar a, m� is the mass of the DM particle, y� is
the Yukawa coupling of the pseudoscalar a to a pair of DM particles and sin ✓ quantifies
the mixing of the two CP-odd weak spin-0 eigenstates. Furthermore, N

q
c = 3, N

l
c = 1,

– 2 –

Figure 1. Examples of tree-level Feynman diagrams representing pp ! aa production via
gluon-gluon-fusion (ggF) Higgs production (left) and pp ! l

+
l
�
aa production in associated Zh

production (right) in the 2HDM+a model. The possible decay modes of the pseudoscalar a are not
shown. Consult the text for further details.

⌘u = cot�, ⌘d = tan�, ⌘l = tan� and yf =
p
2mf/v with mf the mass of the relevant

SM fermion, v ' 246GeV the Higgs vacuum expectation value (VEV) and ↵s the strong
coupling constant. From the analytic expressions (2.1) and (2.2) it is evident that the
pseudoscalar a can only be long-lived if sin ✓ is sufficiently small, i.e. sin ✓ ! 0, and decays to
DM are strongly suppressed/absent which can be achieved either via decoupling, i.e. y� ! 0,
or by forbidding the process kinematically, i.e. m� > ma/2.

Given the strong suppression of the couplings of the pseudoscalar a to SM fermions in
the limit sin ✓ ! 0, the only possibility to produce a long-lived a is via the decay of heavier
spin-0 state � into a pair of such pseudoscalars. In the case that the scalar potential
is CP conserving the � has to be a CP-even state which implies that in the 2HDM+a

model one can have both decays of the 125GeV Higgs h and the heavy CP-even Higgs H.
The corresponding partial decay widths can be written as

� (� ! aa) =
g
2
�aa

32⇡
m�

s
1� 4m2

a

m
2
�

, (2.4)

with � = h,H. For sin ✓ ' 0 the relevant trilinear couplings are given by [4]

ghaa ' � 2v

mh

�
�P1 cos

2
� + �P2 sin

2
�
�
,

gHaa ' v

mH

sin (2�) (�P1 � �P2) ,

(2.5)

where mh ' 125GeV is the mass of the SM-like Higgs, while �P1 and �P2 are the quartic
couplings that appear in the 2HDM+a scalar potential as follows P 2

�
�P1H

†
1H1+�P2H

†
2H2

�

(see for example [4, 9] for the complete expression of the scalar potential). Here P denotes
the additional pseudoscalar in the weak eigenstate basis which satisfies P ' a for sin ✓ ' 0.

The trilinear couplings entering (2.5) can be constrained phenomenologically. In the
case of ghaa one can require that the partial decay width � (h ! aa) does not exceed the
total decay width �h of the 125GeV Higgs as measured directly at the LHC. For ma ⌧ mh

this leads to the inequality [22]

|ghaa| .
r

32⇡�h

mh

' 0.94 , (2.6)
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Decay
 

opens up
a → tt̄

https://arxiv.org/pdf/2302.02735.pdf
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Figure 4. Feynman diagrams that lead to DM annihilation via ��̄ ! ah or ��̄ ! aH (left) and
��̄ ! aa in the 2HDM+a model. The possible decay modes of the pseudoscalar a, the SM-like
Higgs h and the heavy CP-even Higgs H are not shown. Further details are given in the main text.

s-channel processes and ��̄ ! aa with DM exchange in the t-channel (cf. also [9]). The an-
nihilation cross sections (5.1) of the former two reactions are, however, proportional to sin2 ✓

making them numerically irrelevant in the limit sin ✓ ! 0 unless ma = m�/2. Such highly
tuned solutions to the DM miracle will not be considered in what follows. Similarly, all DM
annihilation contributions involving the exchange of a heavy pseudoscalar A are suppressed
by at least two powers of the sine of the mixing angle ✓, so that only the processes depicted
in Figure 4 are relevant for the calculation of the DM abundance in the context of this work.

The annihilation process ��̄ ! a ! ah proceeds via s-wave and we find for the
corresponding coefficient the following analytic result
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where the expression for ghaa in the limit sin ✓ ! 0 can be found in the first line of (2.5)
and �a denotes the total decay width of the pseudoscalar a. Since �

0
ah

6= 0 we ignore the
p-wave coefficient �1

ah
below by setting it to zero. The result for the s-wave coefficient �0

aH

describing DM annihilation through ��̄ ! a ! aH is simply obtained from (5.2) by the
replacements ghaa ! gHaa and mh ! mH .

In the case of ��̄ ! aa the annihilation cross section is instead p-wave suppressed
(see [63] for the calculation of the t-channel contribution in the simplified pseudoscalar DM
model) and the corresponding expansion coefficients take the form �

0
aa = 0 and
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Using the velocity expansion (5.1) the DM relic density after freeze-out can be approx-
imated by
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Here xf = m�/Tf 2 [20, 30] with Tf the freeze-out temperature and the sum over X in
principle includes all possible final states. As we have explained above, for sin ✓ ' 0 and
away from the exceptional points ma = m�/2, however, only the channels X = ah, aH, aa
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Figure 5. Predicted DM relic abundance in the ma–m� plane for the 2HDM+a benchmark I pa-
rameter choices (3.3). The contour lines indicate the value of ⌦h2

/0.12, meaning that the regions
below (above) 1 correspond to a DM underabundance (overabundance) in today’s Universe. For ad-
ditional details we refer the interested reader to the main text.

are numerically important. In the limit of heavy DM, i.e. m� � ma,mh,mH , the velocity-
averaged annihilation cross section at the freeze-out temperature can be further simplified:

h�vrelif '
y
2
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128⇡m2
�

"�
g
2
haa

+ g
2
Haa

�
v
2

4m2
�

+
y
2
�

xf

#
. (5.5)

This approximation shows that the s-channel (t-channel) contributions to h�vrelif scale as
1/m4

�

�
1/m2

�

�
in the limit of infinitely heavy DM.

The formulas (5.4) and (5.5) represent useful expressions to estimate ⌦h2. In the case
of the benchmark I scenario (3.3) one has g

2
haa

' 6 · 10�5 and g
2
Haa

= 0, and it is thus a
good approximation to neglect the s-channel contributions to h�vrelif . It follows that

⌦h2

0.12
' 0.9

y4�

⇣
xf

25

⌘2 ⇣ m�

150GeV

⌘2
. (5.6)

Using xf ' 25 the relic abundance of ⌦h2 = 0.120± 0.001 as determined by Planck [64] is
therefore obtained in the case of (3.3) for DM masses m� ' 160GeV while for parameter
regions with m� . 160GeV (m� & 160GeV) one expects DM underabundance (overabun-
dance). These expectations agree quite well with the results of our exact relic calculation
that have been obtained with MadDM [65] and are shown in Figure 5. In fact, the exact
computation for (3.3) and ma = 30GeV leads to ⌦h2 = 0.118, while (5.6) naively predicts
a value that is larger by around 15%. The observed difference can be traced back to the fact
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tuned solutions to the DM miracle will not be considered in what follows. Similarly, all DM
annihilation contributions involving the exchange of a heavy pseudoscalar A are suppressed
by at least two powers of the sine of the mixing angle ✓, so that only the processes depicted
in Figure 4 are relevant for the calculation of the DM abundance in the context of this work.
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Figure 4. Feynman diagrams that lead to DM annihilation via ��̄ ! ah or ��̄ ! aH (left) and
��̄ ! aa in the 2HDM+a model. The possible decay modes of the pseudoscalar a, the SM-like
Higgs h and the heavy CP-even Higgs H are not shown. Further details are given in the main text.

s-channel processes and ��̄ ! aa with DM exchange in the t-channel (cf. also [9]). The an-
nihilation cross sections (5.1) of the former two reactions are, however, proportional to sin2 ✓

making them numerically irrelevant in the limit sin ✓ ! 0 unless ma = m�/2. Such highly
tuned solutions to the DM miracle will not be considered in what follows. Similarly, all DM
annihilation contributions involving the exchange of a heavy pseudoscalar A are suppressed
by at least two powers of the sine of the mixing angle ✓, so that only the processes depicted
in Figure 4 are relevant for the calculation of the DM abundance in the context of this work.
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where the expression for ghaa in the limit sin ✓ ! 0 can be found in the first line of (2.5)
and �a denotes the total decay width of the pseudoscalar a. Since �
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ah
below by setting it to zero. The result for the s-wave coefficient �0
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describing DM annihilation through ��̄ ! a ! aH is simply obtained from (5.2) by the
replacements ghaa ! gHaa and mh ! mH .

In the case of ��̄ ! aa the annihilation cross section is instead p-wave suppressed
(see [63] for the calculation of the t-channel contribution in the simplified pseudoscalar DM
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Using the velocity expansion (5.1) the DM relic density after freeze-out can be approx-
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Here xf = m�/Tf 2 [20, 30] with Tf the freeze-out temperature and the sum over X in
principle includes all possible final states. As we have explained above, for sin ✓ ' 0 and
away from the exceptional points ma = m�/2, however, only the channels X = ah, aH, aa
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making them numerically irrelevant in the limit sin ✓ ! 0 unless ma = m�/2. Such highly
tuned solutions to the DM miracle will not be considered in what follows. Similarly, all DM
annihilation contributions involving the exchange of a heavy pseudoscalar A are suppressed
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by at least two powers of the sine of the mixing angle ✓, so that only the processes depicted
in Figure 4 are relevant for the calculation of the DM abundance in the context of this work.

The annihilation process ��̄ ! a ! ah proceeds via s-wave and we find for the
corresponding coefficient the following analytic result
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where the expression for ghaa in the limit sin ✓ ! 0 can be found in the first line of (2.5)
and �a denotes the total decay width of the pseudoscalar a. Since �
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6= 0 we ignore the
p-wave coefficient �1

ah
below by setting it to zero. The result for the s-wave coefficient �0
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describing DM annihilation through ��̄ ! a ! aH is simply obtained from (5.2) by the
replacements ghaa ! gHaa and mh ! mH .

In the case of ��̄ ! aa the annihilation cross section is instead p-wave suppressed
(see [63] for the calculation of the t-channel contribution in the simplified pseudoscalar DM
model) and the corresponding expansion coefficients take the form �
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Using the velocity expansion (5.1) the DM relic density after freeze-out can be approx-
imated by
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Here xf = m�/Tf 2 [20, 30] with Tf the freeze-out temperature and the sum over X in
principle includes all possible final states. As we have explained above, for sin ✓ ' 0 and
away from the exceptional points ma = m�/2, however, only the channels X = ah, aH, aa
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Figure 5. Predicted DM relic abundance in the ma–m� plane for the 2HDM+a benchmark I pa-
rameter choices (3.3). The contour lines indicate the value of ⌦h2

/0.12, meaning that the regions
below (above) 1 correspond to a DM underabundance (overabundance) in today’s Universe. For ad-
ditional details we refer the interested reader to the main text.

are numerically important. In the limit of heavy DM, i.e. m� � ma,mh,mH , the velocity-
averaged annihilation cross section at the freeze-out temperature can be further simplified:
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This approximation shows that the s-channel (t-channel) contributions to h�vrelif scale as
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in the limit of infinitely heavy DM.

The formulas (5.4) and (5.5) represent useful expressions to estimate ⌦h2. In the case
of the benchmark I scenario (3.3) one has g
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= 0, and it is thus a
good approximation to neglect the s-channel contributions to h�vrelif . It follows that
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Using xf ' 25 the relic abundance of ⌦h2 = 0.120± 0.001 as determined by Planck [64] is
therefore obtained in the case of (3.3) for DM masses m� ' 160GeV while for parameter
regions with m� . 160GeV (m� & 160GeV) one expects DM underabundance (overabun-
dance). These expectations agree quite well with the results of our exact relic calculation
that have been obtained with MadDM [65] and are shown in Figure 5. In fact, the exact
computation for (3.3) and ma = 30GeV leads to ⌦h2 = 0.118, while (5.6) naively predicts
a value that is larger by around 15%. The observed difference can be traced back to the fact
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Figure 4. Feynman diagrams that lead to DM annihilation via ��̄ ! ah or ��̄ ! aH (left) and
��̄ ! aa in the 2HDM+a model. The possible decay modes of the pseudoscalar a, the SM-like
Higgs h and the heavy CP-even Higgs H are not shown. Further details are given in the main text.
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away from the exceptional points ma = m�/2, however, only the channels X = ah, aH, aa
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nχ /T3 ∼ exp(−mχ /T )

nχ /T3 ≡ const.

 freeze-out: → nχ ⟨σvrel⟩ ∼ H

(hold for )mχ ≫ ma, mh, mH

Physical fields:   and .h, H, a, A, H± χ
Physical parameters:  .α, β, θ, v, λ3, λP1, λP2, mh, mH, ma, mA, mH±

: mixing angle for pseudo-scalars ( )θ a, A: mixing angle for scalars ( )α h, H
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Using xf ' 25 the relic abundance of ⌦h2 = 0.120± 0.001 as determined by Planck [64] is
therefore obtained in the case of (3.3) for DM masses m� ' 160GeV while for parameter
regions with m� . 160GeV (m� & 160GeV) one expects DM underabundance (overabun-
dance). These expectations agree quite well with the results of our exact relic calculation
that have been obtained with MadDM [65] and are shown in Figure 5. In fact, the exact
computation for (3.3) and ma = 30GeV leads to ⌦h2 = 0.118, while (5.6) naively predicts
a value that is larger by around 15%. The observed difference can be traced back to the fact
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the main text.

that the MadDM calculation gives xf ' 21 in the parameter region of interest and correctly
takes into account the phase-space suppression present in (5.3) due to the non-zero values
of m

2
a/m

2
�. We add that ��̄ ! a ! ah annihilation represents a relative contribution
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 no longer true 
 we get more intricate 

behaviour modelled with 
.

mχ ≫ mH
→

MadDM
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• The additional pseudo-scalar  can become long-lived for small mixing angles .a θ
- Interesting LLP signatures that can be probed for at colliders. 
- This scenario is compatible with current relic density measurements. 
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