Based on ArXiv:2302.02735 (U. Haisch, LS)

SFB 1258
Neutrinos Dark Matter Messengers

Technische Universität München

Long-lived particle phenomenology in the $2 \mathrm{HDM}+a$ model

Luc Schnell

13th Workshop of the Long-Lived Particle Community, CERN June 20, 2023

1. Introduction

1.1 Motivation

1.2 2HDM $+a$ in a nutshell
1.3 $E_{T}^{m i s s}$ signatures

1. Introduction

1.1 Motivation

1. Introduction

1.1 Motivation

UV-complete DM benchmarks

1. Introduction

1.1 Motivation

UV-complete DM benchmarks

- Dark matter (DM) has become a prime target of BSM searches at the LHC.

1. Introduction

1.1 Motivation

UV-complete DM benchmarks

- Dark matter (DM) has become a prime target of BSM searches at the LHC.
- Mediator models are particularly relevant for colliders \rightarrow how can we explore them systematically?

1. Introduction

1.1 Motivation

UV-complete DM benchmarks

- Dark matter (DM) has become a prime target of BSM searches at the LHC.
- Mediator models are particularly relevant for colliders \rightarrow how can we explore them systematically?

$$
\text { Simplified models: e.g. } \begin{array}{r}
\mathscr{L} \supset-g_{q}^{A} Z^{\prime \mu}\left(\bar{q} \gamma_{\mu} \gamma^{5} q\right) \\
\\
\\
-g_{D M}^{A} Z^{\mu}\left(\bar{\chi} \gamma_{\mu} \gamma^{5} \chi\right)
\end{array}
$$

1. Introduction

1.1 Motivation

UV-complete DM benchmarks

- Dark matter (DM) has become a prime target of BSM searches at the LHC.
- Mediator models are particularly relevant for colliders \rightarrow how can we explore them systematically?

1. Introduction

1.1 Motivation

UV-complete DM benchmarks

- Dark matter (DM) has become a prime target of BSM searches at the LHC.
- Mediator models are particularly relevant for colliders \rightarrow how can we explore them systematically?

Mixing with scalar sector

1. Introduction

1.1 Motivation

UV-complete DM benchmarks

- Dark matter (DM) has become a prime target of BSM searches at the LHC.
- Mediator models are particularly relevant for colliders \rightarrow how can we explore them systematically?

Mixing with scalar sector

- Mixing of a DM mediator with the (extended) scalar sector leads to a rich and interesting collider phenomenology.

1. Introduction

1.1 Motivation

UV-complete DM benchmarks

- Dark matter (DM) has become a prime target of BSM searches at the LHC.
- Mediator models are particularly relevant for colliders \rightarrow how can we explore them systematically?

Mixing with scalar sector

- Mixing of a DM mediator with the (extended) scalar sector leads to a rich and interesting collider phenomenology.

1. Introduction

1.2 2HDM+a in a nutshell

1. Introduction

1.2 2HDM+a in a nutshell

	$V_{H}=\mu_{1} H_{1}^{\dagger} H_{1}+\mu_{2} H_{2}^{\dagger} H_{2}+\left(\mu_{3} H_{1}^{\dagger} H_{2}+\right.$ h.c. $)+\lambda_{1}\left(H_{1}^{\dagger} H_{1}\right)^{2}+\lambda_{2}\left(H_{2}^{\dagger} H_{2}\right)^{2}$
potential	$+\lambda_{3}\left(H_{1}^{\dagger} H_{1}\right)\left(H_{2}^{\dagger} H_{2}\right)+\lambda_{4}\left(H_{1}^{\dagger} H_{2}\right)\left(H_{2}^{\dagger} H_{1}\right)+\left[\lambda_{5}\left(H_{1}^{\dagger} H_{2}\right)^{2}+\right.$ h.c. $]$

1. Introduction

1.2 2HDM+a in a nutshell

1. Introduction

1.2 2HDM+a in a nutshell

1. Introduction

1.2 2HDM+a in a nutshell

Pseudoscalar mediator

$$
V_{P}=\frac{1}{2} m_{P}^{2} P^{2}+P\left(i b_{P} H_{1}^{\dagger} H_{2}+\text { h.c. }\right)+P^{2}\left(\lambda_{P 1} H_{1}^{\dagger} H_{1}+\lambda_{P 2} H_{2}^{\dagger} H_{2}\right)
$$

Source: ArXiv:1701.07427 (M. Bauer, U. Haisch and F. Kahlhoefer).

1. Introduction

1.2 2HDM+a in a nutshell

Pseudoscalar mediator

$$
V_{P}=\frac{1}{2} m_{P}^{2} P^{2}+P\left(i b_{P} H_{1}^{\dagger} H_{2}+\text { h.c. }\right)+P^{2}\left(\lambda_{P 1} H_{1}^{\dagger} H_{1}+\lambda_{P 2} H_{2}^{\dagger} H_{2}\right)
$$

Source: ArXiv:1701.07427 (M. Bauer, U. Haisch and F. Kahlhoefer).

1. Introduction

1.2 2HDM +a in a nutshell

Pseudoscalar mediator

$$
V_{P}=\frac{1}{2} m_{P}^{2} P^{2}+P\left(i b_{P} H_{1}^{\dagger} H_{2}+\text { h.c. }\right)+P^{2}\left(\lambda_{P 1} H_{1}^{\dagger} H_{1}+\lambda_{P 2} H_{2}^{\dagger} H_{2}\right)
$$

$$
\mathcal{L}_{\chi}=-i y_{\chi} P \bar{\chi} \gamma_{5} \chi,
$$

1. Introduction

1.2 2HDM +a in a nutshell

1. Introduction

1.2 2HDM +a in a nutshell

Pseudoscalar mediator

$$
V_{P}=\frac{1}{2} m_{P}^{2} P^{2}+P\left(i b_{P} H_{1}^{\dagger} H_{2}+\text { h.c. }\right)+P^{2}\left(\lambda_{P 1} H_{1}^{\dagger} H_{1}+\lambda_{P 2} H_{2}^{\dagger} H_{2}\right)
$$

$$
\mathcal{L}_{\chi}=-i y_{\chi}\left[\bar{P} \bar{\chi} \gamma_{5} \bar{\chi}\right]
$$

[^0]
1. Introduction

1.2 2HDM+a in a nutshell

1. Introduction

1.2 2HDM+a in a nutshell

1. Introduction

1.2 2HDM+a in a nutshell

1. Introduction

1.2 2HDM+a in a nutshell

1. Introduction
 $1.3 \mathrm{E}_{\mathbf{T}}^{\text {miss }}$ signatures

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$
α : mixing angle for scalars (h, H)
θ : mixing angle for pseudo-scalars (a, A)

1. Introduction

$1.3 \mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}$ signatures

Source: ArXiv:1701.07427 (M. Bauer, U. Haisch and F. Kahlhoefer).

$\mathbf{j}+\mathbf{E}_{\mathbf{T}}^{\text {miss }}$	$\mathbf{t} \overline{\mathbf{t}}+\mathbf{E}_{\mathbf{T}}^{\text {miss }}$	$\mathbf{Z}+\mathbf{E}_{\mathbf{T}}^{\text {miss }}$	$\mathbf{W}+\mathbf{E}_{\mathbf{T}}^{\text {miss }}$	$h+\mathbf{E}_{\mathbf{T}}^{\text {miss }}$

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, \nu, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)
θ : mixing angle for pseudo-scalars (a, A)

1. Introduction

$1.3 \mathrm{E}_{\mathrm{T}}^{\text {miss }}$ signatures

Source: ArXiv:1701.07427 (M. Bauer, U. Haisch and F. Kahlhoefer).
$\mathbf{j}+\mathbf{E}_{\mathbf{T}}^{\text {miss }}$
$t \bar{t}+E_{T}^{\text {miss }}$

$$
\mathbf{W}+\mathbf{E}_{\mathbf{T}}^{\text {miss }}
$$

$j+\mathbf{E}_{\mathbf{T}}^{\text {miss }}$
$h+\mathbf{E}_{\mathbf{T}}^{\text {miss }}$

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)
θ : mixing angle for pseudo-scalars (a, A)

1. Introduction

$1.3 \mathrm{E}_{\mathrm{T}}^{\mathrm{miss}}$ signatures

Source: ArXiv:1701.07427 (M. Bauer, U. Haisch and F. Kahlhoefer).

$\mathbf{j}+\mathbf{E}_{\mathbf{T}}^{\text {miss }}$	$\mathbf{t} \overline{\mathbf{t}}+\mathbf{E}_{\mathrm{T}}^{\text {miss }}$	$\mathbf{Z}+\mathbf{E}_{\mathbf{T}}^{\text {miss }}$	$\mathbf{W}+\mathrm{E}_{\mathbf{T}}^{\text {miss }}$	$h+\mathbf{E}_{\mathbf{T}}^{\text {miss }}$

- These $E_{T}^{\text {miss }}$ signatures disappear for small mixing angles $\theta \simeq 0(\rightarrow a \simeq P)$.

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, \nu, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)
θ : mixing angle for pseudo-scalars (a, A)

2. LLP Phenomenology

2.1 Model parameters

2.2 LLP constraints
2.3 Relic density

2. LLP Phenomenology

2.1 Model parameters

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)
θ : mixing angle for pseudo-scalars (a, A)

2. LLP Phenomenology

2.1 Model parameters

- For small mixing angles θ, the pseudoscalar $a \simeq P$ can become long-lived.

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)

2. LLP Phenomenology

2.1 Model parameters

- For small mixing angles θ, the pseudoscalar $a \simeq P$ can become long-lived.

$$
\Gamma(a \rightarrow f \bar{f})=\frac{N_{c}^{f} \eta_{f}^{2} y_{f}^{2}}{16 \pi} m_{a} \sqrt{1-\frac{4 m_{f}^{2}}{m_{a}^{2}}} \sin ^{2} \theta . \quad \Gamma(a \rightarrow g g)=\frac{\alpha_{s}^{2}}{32 \pi^{3} v^{2}} m_{a}^{3}\left|\sum_{q=t, b, c} \eta_{q} f\left(\frac{4 m_{q}^{2}}{m_{a}^{2}}\right)\right|^{2} \sin ^{2} \theta
$$

$$
\Gamma(a \rightarrow \chi \bar{\chi})=\frac{y_{\chi}^{2}}{8 \pi} m_{a} \sqrt{1-\frac{4 m_{\chi}^{2}}{m_{a}^{2}}} \cos ^{2} \theta
$$

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.

2. LLP Phenomenology

2.1 Model parameters

- For small mixing angles θ, the pseudoscalar $a \simeq P$ can become long-lived.
$\Gamma(a \rightarrow f \bar{f})=\frac{N_{c}^{f} \eta_{f}^{2} y_{f}^{2}}{16 \pi} m_{a} \sqrt{1-\frac{4 m_{f}^{2}}{m_{a}^{2}} \sin ^{2} \theta}$

$$
\Gamma(a \rightarrow g g)=\frac{\alpha_{s}^{2}}{32 \pi^{3} v^{2}} m_{a}^{3}\left|\sum_{q=t, b, c} \eta_{q} f\left(\frac{4 m_{q}^{2}}{m_{a}^{2}}\right)\right|^{2} \sin ^{2} \theta
$$

$$
\Gamma(a \rightarrow \chi \bar{\chi})=\frac{y_{\chi}^{2}}{8 \pi} m_{a} \sqrt{1-\frac{4 m_{\chi}^{2}}{m_{a}^{2}}} \cos ^{2} \theta
$$

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.

2. LLP Phenomenology

2.1 Model parameters

- For small mixing angles θ, the pseudoscalar $a \simeq P$ can become long-lived.
$\Gamma(a \rightarrow f \bar{f})=\frac{N_{c}^{f} \eta_{f}^{2} y_{f}^{2}}{16 \pi} m_{a} \sqrt{1-\frac{4 m_{f}^{2}}{m_{a}^{2}} \sin ^{2} \theta}$

$$
\Gamma(a \rightarrow g g)=\frac{\alpha_{s}^{2}}{32 \pi^{3} v^{2}} m_{a}^{3}\left|\sum_{q=t, b, c} \eta_{q} f\left(\frac{4 m_{q}^{2}}{m_{a}^{2}}\right)\right|^{2} \sin ^{2} \theta
$$

$\Gamma(a \rightarrow \chi \bar{\chi})=\frac{y_{\chi}^{2}}{8 \pi} m_{a} \sqrt{1-\frac{4 m_{\chi}^{2}}{m_{a}^{2}}} \cos ^{2} \theta$,

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)

2. LLP Phenomenology

2.1 Model parameters

- For small mixing angles θ, the pseudoscalar $a \simeq P$ can become long-lived.
$\Gamma(a \rightarrow f \bar{f})=\frac{N_{c}^{f} \eta_{f}^{2} y_{f}^{2}}{16 \pi} m_{a} \sqrt{1-\frac{4 m_{f}^{2}}{m_{a}^{2}} \sin ^{2} \theta}$

$$
\Gamma(a \rightarrow g g)=\frac{\alpha_{s}^{2}}{32 \pi^{3} v^{2}} m_{a}^{3}\left|\sum_{q=t, b, c} \eta_{q} f\left(\frac{4 m_{q}^{2}}{m_{a}^{2}}\right)\right|^{2} \sin ^{2} \theta
$$

$\Gamma(a \rightarrow \chi \bar{\chi})=\frac{y_{\chi}^{2}}{8 \pi} m_{a} \sqrt{1-\frac{4 m_{\chi}^{2}}{m_{a}^{2}}} \cos ^{2} \theta$,

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)

2. LLP Phenomenology

2.1 Model parameters

- For small mixing angles θ, the pseudoscalar $a \simeq P$ can become long-lived.
$\Gamma(a \rightarrow f \bar{f})=\frac{N_{c}^{f} \eta_{f}^{2} y_{f}^{2}}{16 \pi} m_{a} \sqrt{1-\frac{4 m_{f}^{2}}{m_{a}^{2}} \sin ^{2} \theta}$
$\Gamma(a \rightarrow g g)=\frac{\alpha_{s}^{2}}{32 \pi^{3} v^{2}} m_{a}^{3}\left|\sum_{q=t, b, c} \eta_{q} f\left(\frac{4 m_{q}^{2}}{m_{a}^{2}}\right)\right|^{2} \sin ^{2} \theta$
$\Gamma(a \rightarrow \chi \bar{\chi})=\frac{y_{\chi}^{2}}{8 \pi} m_{a}=1-\frac{4 m_{\chi}^{2}}{m_{a}^{2}} \cos ^{2} \theta$

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)

2. LLP Phenomenology

2.1 Model parameters

- For small mixing angles θ, the pseudoscalar $a \simeq P$ can become long-lived.

Source: ArXiv:1802.02156
(U. Haisch, J.F. Kemenik,
A. Malinauskas, M. Spira)

$$
\left.\Gamma(a \rightarrow f \bar{f})=\frac{N_{c}^{f} \eta_{f}^{2} y_{f}^{2}}{16 \pi} m_{a} \sqrt{1-\frac{4 m_{f}^{2}}{m_{a}^{2}} \sin ^{2} \theta} \quad \Gamma(a \rightarrow g g)=\frac{\alpha_{s}^{2}}{32 \pi^{3} v^{2}} m_{a}^{3} \right\rvert\, \sum_{q=t, b, c} \eta_{q} f\left(\frac{4 m_{q}^{2}}{m_{a}^{2}}\right) \sin ^{2} \theta
$$

$$
\Gamma(a \rightarrow \chi \bar{\chi})=\frac{y_{\chi}^{2}}{8 \pi} m_{a} \sqrt{1-\frac{4 m_{\chi}^{2}}{m_{a}^{2}} \cos ^{2} \theta, ~}
$$

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)

2. LLP Phenomenology

2.1 Model parameters

- For small mixing angles θ, the pseudoscalar $a \simeq P$ can become long-lived.

Source: ArXiv:1802.02156
(U. Haisch, J.F. Kemenik,
A. Malinauskas, M. Spira)
$\Gamma(a \rightarrow f \bar{f})=\frac{N_{c}^{f} \eta_{f}^{2} y_{f}^{2}}{16 \pi} m_{a} \sqrt{1-\frac{4 m_{f}^{2}}{m_{a}^{2}} \sin ^{2} \theta}$

$$
\Gamma(a \rightarrow g g)=\frac{\alpha_{s}^{2}}{32 \pi^{3} v^{2}} m_{a}^{3}\left|\sum_{q=t, b, c} \eta_{q} f\left(\frac{4 m_{q}^{2}}{m_{a}^{2}}\right)\right|^{2} \sin ^{2} \theta
$$

$$
\Gamma(a \rightarrow \chi \bar{\chi})=\frac{y_{\chi}^{2}}{8 \pi} m_{a} \sqrt{1-\frac{4 m_{\chi}^{2}}{m_{a}^{2}}} \cos ^{2} \theta
$$

- Production via the decay of a heavier spin-0 state:

Source: ArXiv:2302.02735 (U. Haisch, LS)

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)
θ : mixing angle for pseudo-scalars (a, A)

2. LLP Phenomenology

2.1 Model parameters

- For small mixing angles θ, the pseudoscalar $a \simeq P$ can become long-lived.

Source: ArXiv:1802.02156
(U. Haisch, J.F. Kemenik,
A. Malinauskas, M. Spira)
$\Gamma(a \rightarrow f \bar{f})=\frac{N_{c}^{f} \eta_{f}^{2} y_{f}^{2}}{16 \pi} m_{a} \sqrt{1-\frac{4 m_{f}^{2}}{m_{a}^{2}} \sin ^{2} \theta}$

$$
\Gamma(a \rightarrow g g)=\frac{\alpha_{s}^{2}}{32 \pi^{3} v^{2}} m_{a}^{3}\left|\sum_{q=t, b, c} \eta_{q} f\left(\frac{4 m_{q}^{2}}{m_{a}^{2}}\right)\right|^{2} \sin ^{2} \theta
$$

$$
\Gamma(a \rightarrow \chi \bar{\chi})=\frac{y_{\chi}^{2}}{8 \pi} m_{a} \sqrt{1-\frac{4 m_{\chi}^{2}}{m_{a}^{2}}} \cos ^{2} \theta
$$

- Production via the decay of a heavier spin-0 state:
- Benchmark II: $m_{a}<m_{h} / 2$

Source: ArXiv:2302.02735 (U. Haisch, LS)

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)
θ : mixing angle for pseudo-scalars (a, A)

2. LLP Phenomenology

2.1 Model parameters

- For small mixing angles θ, the pseudoscalar $a \simeq P$ can become long-lived.

Source: ArXiv:1802.02156
(U. Haisch, J.F. Kemenik,
A. Malinauskas, M. Spira)
$\Gamma(a \rightarrow f \bar{f})=\frac{N_{c}^{f} \eta_{f}^{2} y_{f}^{2}}{16 \pi} m_{a} \sqrt{1-\frac{4 m_{f}^{2}}{m_{a}^{2}} \sin ^{2} \theta}$

$$
\left.\Gamma(a \rightarrow g g)=\frac{\alpha_{s}^{2}}{32 \pi^{3} v^{2}} m_{a}^{3}\left|\sum_{q=t, b, c} \eta_{q} f\left(\frac{4 m_{q}^{2}}{m_{a}^{2}}\right)\right|^{2} \sin ^{2} \theta \right\rvert\,
$$

$$
\Gamma(a \rightarrow \chi \bar{\chi})=\frac{y_{\chi}^{2}}{8 \pi} m_{a} \sqrt{1-\frac{4 m_{\chi}^{2}}{m_{a}^{2}} \cos ^{2} \theta, ~}
$$

- Production via the decay of a heavier spin-0 state:
- Benchmark I: $m_{a}<m_{h} / 2$
- Benchmark II: $m_{h} / 2<m_{a}<m_{H} / 2$

Source: ArXiv:2302.02735 (U. Haisch, LS).

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.

2. LLP Phenomenology

2.1 Model parameters

Source: ArXiv:1802.02156
(U. Haisch, J.F. Kemenik,
A. Malinauskas, M. Spira)

- For small mixing angles θ, the pseudoscalar $a \simeq P$ can become long-lived.

$$
\Gamma(a \rightarrow g g)=\frac{\alpha_{s}^{2}}{32 \pi^{3} v^{2}} m_{a}^{3}\left|\sum_{q=t, b, c} \eta_{q} f\left(\frac{4 m_{q}^{2}}{m_{a}^{2}}\right)\right|^{2} \sin ^{2} \theta
$$

- Production via the decay of a heavier spin-0 state:
- Benchmark I: $m_{a}<m_{h} / 2$
- Benchmark II: $m_{h} / 2<m_{a}<m_{H} / 2$

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.

2. LLP Phenomenology

2.2 LLP constraints

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)
θ : mixing angle for pseudo-scalars (a, A)

2. LLP Phenomenology

2.2 LLP constraints

ArXiv: 1811.07370 (ATLAS)

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)
θ : mixing angle for pseudo-scalars (a, A)

2. LLP Phenomenology

2.2 LLP constraints

ArXiv:1811.07370 (ATLAS)

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)
θ : mixing angle for pseudo-scalars (a, A)

2. LLP Phenomenology

2.2 LLP constraints

Source: ArXiv:2302.02735 (U. Haisch, LS)

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)
θ : mixing angle for pseudo-scalars (a, A)

2. LLP Phenomenology

2.2 LLP constraints

2. LLP Phenomenology

2.2 LLP constraints

ArXiv:1811.07370 (ATLAS)

$36.1 \mathrm{fb}^{-1}$ of data.
Three benchmark models (one is scalar portal). Narrow jets in muon spectrometer (MS).
2 MS vertices, 1 MS vertex and $E_{T}^{\text {miss }}>30 \mathrm{GeV}$.

ArXiv:1902.03094 (ATLAS)
$10.8 \mathrm{fb}^{-1}$ of data.
Two narrow jets in HCal with no associated activity in tracker, high $E_{H} / E_{E M}$ ("CalRatio").

2. LLP Phenomenology

2.2 LLP constraints

ArXiv:1811.07370 (ATLAS)

$36.1 \mathrm{fb}^{-1}$ of data.
Three benchmark models (one is scalar portal). Narrow jets in muon spectrometer (MS).
2 MS vertices, 1 MS vertex and $E_{T}^{\text {miss }}>30 \mathrm{GeV}$.

ArXiv:1902.03094 (ATLAS)
$10.8 \mathrm{fb}^{-1}$ of data.
Two narrow jets in HCal with no associated activity in tracker, high $E_{H} / E_{E M}$ ("CalRatio").

ArXiv:1911.12575 (ATLAS)
$33 \mathrm{fb}^{-1}$ of data.
Narrow jet in MS and displaced track in inner detector (ID).
Branching ratios $a \rightarrow b \bar{b}: c \bar{c}: \tau^{+} \tau^{-}$assumed to be 85:5:8.

Source: ArXiv:2302.02735
(U. Haisch, LS).

2. LLP Phenomenology

2.2 LLP constraints

Source: ArXiv:2302.02735
(U. Haisch, LS).

ArXiv:1811.07370 (ATLAS)

$36.1 \mathrm{fb}^{-1}$ of data.

Three benchmark models (one is scalar portal). Narrow jets in muon spectrometer (MS).
2 MS vertices, 1 MS vertex and $E_{T}^{\text {miss }}>30 \mathrm{GeV}$.

ArXiv:1902.03094 (ATLAS)
$10.8 \mathrm{fb}^{-1}$ of data.
Two narrow jets in HCal with no associated activity in tracker, high $E_{H} / E_{E M}$ ("CalRatio").
.

ArXiv:1911.12575 (ATLAS)

$33 \mathrm{fb}^{-1}$ of data.
Narrow jet in MS and displaced track in inner detector (ID).
Branching ratios $a \rightarrow b \bar{b}: c \bar{c}: \tau^{+} \tau^{-}$assumed to be 85:5:8.

$$
\text { MS vertices, } 1 \text { MS vertex and } E_{T}>30 \mathrm{GeV}
$$

$$
\text { Drancining ratus } a \rightarrow 00 \text {. cc . } \tau 2 \text { assumed to De oo.0.0. }
$$

ArXiv:2203.00587 (ATLAS)

$139 \mathrm{fb}^{-1}$ of data.
Two narrow, high-multiplicity jets in MS.
Background (punch-through jets, noncollision background) reduced by requiring two displaced vertices.

2. LLP Phenomenology

2.2 LLP constraints

ArXiv:2203.01009 (ATLAS)

$139 \mathrm{fb}^{-1}$ of data.
Two narrow jets in HCal with no associated
activity in tracker, high $E_{H} / E_{E M}$ („CalRatio"). Improved displaced-jet identification (NN).

ArXiv:1811.07370 (ATLAS)

$36.1 \mathrm{fb}^{-1}$ of data.

Three benchmark models (one is scalar portal). Narrow jets in muon spectrometer (MS).
2 MS vertices, 1 MS vertex and $E_{T}^{\text {miss }}>30 \mathrm{GeV}$.

ArXiv:1902.03094 (ATLAS)

$10.8 \mathrm{fb}^{-1}$ of data.
Two narrow jets in HCal with no associated activity in tracker, high $E_{H} / E_{E M}$ ("CalRatio").

ArXiv:1911.12575 (ATLAS)

$33 \mathrm{fb}^{-1}$ of data.
Narrow jet in MS and displaced track in inner detector (ID).
Branching ratios $a \rightarrow b \bar{b}: c \bar{c}: \tau^{+} \tau^{-}$assumed to be 85:5:8.

ArXiv:2203.00587 (ATLAS)

$139 \mathrm{fb}^{-1}$ of data.
Two narrow, high-multiplicity jets in MS.
Background (punch-through jets, noncollision background) reduced by requiring two displaced vertices.

2. LLP Phenomenology

2.2 LLP constraints

ArXiv:2107.04838 (CMS)

$137 \mathrm{fb}^{-1}$ of data.
One particle shower in endcap muon detectors (EMD) and $p_{T}^{\text {miss }}>200 \mathrm{GeV}$.
Sufficient level of shielding in front of the EMD makes background low enough to only search for one shower.

ArXiv:2203.01009 (ATLAS)

$139 \mathrm{fb}^{-1}$ of data.
Two narrow jets in HCal with no associated
activity in tracker, high $E_{H} / E_{E M}$ („CalRatio"). Improved displaced-jet identification (NN).

ArXiv:1811.07370 (ATLAS)

$36.1 \mathrm{fb}^{-1}$ of data.

Three benchmark models (one is scalar portal). Narrow jets in muon spectrometer (MS).
2 MS vertices, 1 MS vertex and $E_{T}^{\text {miss }}>30 \mathrm{GeV}$.

ArXiv:1902.03094 (ATLAS)

$10.8 \mathrm{fb}^{-1}$ of data.
Two narrow jets in HCal with no associated activity in tracker, high $E_{H} / E_{E M}$ ("CalRatio").

ArXiv:1911.12575 (ATLAS)

$33 \mathrm{fb}^{-1}$ of data.

Narrow jet in MS and displaced track in inner detector (ID).
Branching ratios $a \rightarrow b \bar{b}: c \bar{c}: \tau^{+} \tau^{-}$assumed to be 85:5:8.

ArXiv:2203.00587 (ATLAS)

$139 \mathrm{fb}^{-1}$ of data.
Two narrow, high-multiplicity jets in MS.
Background (punch-through jets, noncollision background) reduced by requiring two displaced vertices.

2. LLP Phenomenology

2.2 LLP constraints

2. LLP Phenomenology

2.2 LLP constraints

Source: ArXiv:2302.02735 (U. Haisch, LS).

2. LLP Phenomenology

2.2 LLP constraints

Source: ArXiv:2302.02735 (U. Haisch, LS).

2. LLP Phenomenology

2.3 Relic density

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)
θ : mixing angle for pseudo-scalars (a, A)

2. LLP Phenomenology

2.3 Relic density

- Can we get the DM relic density $\Omega h^{2}=0.120(1)$ right?

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)

2. LLP Phenomenology

2.3 Relic density

- Can we get the DM relic density $\Omega h^{2}=0.120(1)$ right?
- DM density evolution („freeze-out"):

$$
\frac{d n_{\chi}}{d t}+3 H n_{\chi}=-\left\langle\sigma v_{r e l}\right\rangle\left(n_{\chi}^{2}-n_{\chi}^{(e q) 2}\right)
$$

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.

2. LLP Phenomenology

2.3 Relic density

- Can we get the DM relic density $\Omega h^{2}=0.120(1)$ right?
- DM density evolution (,,freeze-out"):

$$
n_{\chi} / T^{3} \sim \exp \left(-m_{\chi} / T\right)
$$

$$
\frac{d n_{\chi}}{d t}+3 H n_{\chi}=-\left\langle\sigma v_{r e l}\right\rangle\left(n_{\chi}^{2}-n_{\chi}^{(e q) 2}\right)
$$

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.

2. LLP Phenomenology

2.3 Relic density

- Can we get the DM relic density $\Omega h^{2}=0.120(1)$ right?
- DM density evolution (,,freeze-out"):

$$
\frac{d n_{\chi}}{d t}+3 H n_{\chi}=-\left\langle\sigma v_{r e l}\right\rangle\left(n_{\chi}^{2}-n_{\chi}^{(e q) 2}\right) \quad \rightarrow \text { freeze-out: } n_{\chi}\left\langle\sigma v_{\text {rel }}\right\rangle \sim H
$$

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.

2. LLP Phenomenology

2.3 Relic density

- Can we get the DM relic density $\Omega h^{2}=0.120(1)$ right?
- DM density evolution (,,freeze-out"):

$$
\frac{d n_{\chi}}{d t}+3 H n_{\chi}=-\left\langle\sigma v_{r e l}\right\rangle\left(n_{\chi}^{2}-n_{\chi}^{(e q) 2}\right) \quad \begin{array}{ll}
& n_{\chi} / T^{3} \sim \exp \left(-m_{\chi} / T\right) \\
& \rightarrow \text { freeze-out: } n_{\chi}\left\langle\sigma v_{r e l}\right\rangle \sim H \\
& n_{\chi} / T^{3} \equiv \mathrm{const} .
\end{array}
$$

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)

2. LLP Phenomenology

2.3 Relic density

- Can we get the DM relic density $\Omega h^{2}=0.120(1)$ right?
- DM density evolution (,,freeze-out"):

$$
\frac{d n_{\chi}}{d t}+3 H n_{\chi}=-\left\langle\sigma v_{r e l}\right\rangle\left(n_{\chi}^{2}-n_{\chi}^{(e q) 2}\right) \quad \begin{array}{ll}
& n_{\chi} / T^{3} \sim \exp \left(-m_{\chi} / T\right) \\
& \rightarrow \text { freeze-out: } n_{\chi}\left\langle\sigma v_{\text {rel }}\right\rangle \sim H \\
& n_{\chi} / T^{3} \equiv \text { const. }
\end{array}
$$

$$
\frac{\Omega h^{2}}{0.12} \simeq \frac{1.6 \cdot 10^{-10} \mathrm{GeV}^{-2} x_{f}}{\left\langle\sigma v_{\mathrm{rel}}\right\rangle_{f}}, \quad\left\langle\sigma v_{\mathrm{rel}}\right\rangle_{f} \simeq \frac{y_{\chi}^{2}}{128 \pi m_{\chi}^{2}}\left[\frac{\left(g_{h a a}^{2}+g_{H a a}^{2}\right) v^{2}}{4 m_{\chi}^{2}}+\frac{y_{\chi}^{2}}{x_{f}}\right]
$$

$$
\text { (hold for } \left.m_{\chi} \gg m_{a}, m_{h}, m_{H}\right)
$$

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)

2. LLP Phenomenology

2.3 Relic density

- Can we get the DM relic density $\Omega h^{2}=0.120(1)$ right?
- DM density evolution („freeze-out"):

$$
\begin{aligned}
& \frac{d n_{\chi}}{d t}+3 H n_{\chi}=-\left\langle\sigma v_{r e l}\right\rangle\left(n_{\chi}^{2}-n_{\chi}^{(e q) 2}\right) \quad \begin{array}{l}
n_{\chi} / T^{3} \sim \exp \left(-m_{\chi} / T\right) \\
\rightarrow \text { freeze-out: } n_{\chi}\left\langle v_{\text {rel }}\right\rangle \sim H \\
n_{\chi} / T^{3} \equiv \text { const }
\end{array} \\
& \frac{\Omega h^{2}}{0.12} \simeq \frac{1.6 \cdot 10^{-10} \mathrm{GeV}^{-2} x_{f}}{\left\langle\sigma v_{\mathrm{rel}}\right\rangle_{f}}, \quad\left\langle\sigma v_{\mathrm{rel}}\right\rangle_{f} \simeq \frac{y_{\chi}^{2}}{128 \pi m_{\chi}^{2}}\left[\frac{\left(g_{h a a}^{2}+g_{H a a}^{2}\right) v^{2}}{4 m_{\chi}^{2}}+\frac{y_{\chi}^{2}}{x_{f}}\right] .
\end{aligned}
$$

$$
\text { (hold for } \left.m_{\chi} \gg m_{a}, m_{h}, m_{H}\right)
$$

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)

2. LLP Phenomenology

2.3 Relic density

- Can we get the DM relic density $\Omega h^{2}=0.120(1)$ right?
- DM density evolution („freeze-out"):

Source: ArXiv:2302.02735 (U. Haisch, LS)

Physical fields: $h, H, a, A, H^{ \pm}$and χ.
Physical parameters: $\alpha, \beta, \theta, v, \lambda_{3}, \lambda_{P 1}, \lambda_{P 2}, m_{h}, m_{H}, m_{a}, m_{A}, m_{H^{ \pm}}$.
α : mixing angle for scalars (h, H)

2. LLP Phenomenology

2.3 Relic density

2. LLP Phenomenology

2.3 Relic density

- Can we get the DM relic density $\Omega h^{2}=0.120(1)$ right?

2. LLP Phenomenology

2.3 Relic density

- Can we get the DM relic density $\Omega h^{2}=0.120(1)$ right?

2. LLP Phenomenology

2.3 Relic density

- Can we get the DM relic density $\Omega h^{2}=0.120(1)$ right?
$\mathbf{m}_{\chi} \gg \mathbf{m}_{\mathbf{H}}$ no longer true \rightarrow we get more intricate behaviour modelled with MadDM.

3. Conclusions

3. Conclusions

3. Conclusions

- The 2HDM $+a$ model combines an extended scalar sector (2HDM) with a UV-complete pseudoscalar DM mediator scenario.

This leads to an interesting collider phenomenology \rightarrow important benchmark.

3. Conclusions

- The 2HDM $+a$ model combines an extended scalar sector (2HDM) with a UV-complete pseudoscalar DM mediator scenario.

This leads to an interesting collider phenomenology \rightarrow important benchmark.

- The additional pseudo-scalar a can become long-lived for small mixing angles θ.
- Interesting LLP signatures that can be probed for at colliders.
- This scenario is compatible with current relic density measurements.

Thank you for your attention!

[^0]: Source: ArXiv:1701.07427 (M. Bauer, U. Haisch and F. Kahlhoefer).

