Can we discover LNV with LHC far detectors?

Zeren Simon Wang (National Tsing Hua University)

arXiv:2305.03908 with Ying-nan Mao and Kechen Wang

June 23rd, 2023 13th workshop of the LLP Community

(日) 문 ((日) (日) (日) (日)

Motivation

- Observation of ν oscillation
 - \Rightarrow non-vanishing $\textit{m}_{\nu},$ BSM physics, seesaw mechanisms
- If we observe LNV ⇒ BSM physics, often related to active/sterile neutrinos' nature ⇒ Dirac (LNC) or Majorana (LNC/LNV)?
- Searches for LNV:
 - $0\nu\beta\beta$ decay
 - Collider searches for same-sign leptons
- $\nu's$ almost stable & N's can be long-lived for the local detector
- To fill the gap we can use "far detectors"
- Two classes of far detectors at the LHC
 - <u>Neutrino detectors</u> (ν scattering): FASER ν , SND@LHC, FLArE, ...
 - <u>LLP detectors</u> (*N* displaced decay): FASER, ANUBIS, MATHUSLA, ...
- Can we use far detectors to search for LNV?
- Consider Majorana neutrinos in the following

Neutrino detectors: $\nu - Z$ scattering

- Target: tungsten or liquid argon
- Neutrino-nucleus (charged-current) deep inelastic scattering
- Measure the outgoing charged lepton to determine the lepton number of the incoming neutrino
- Event correlation between the ATLAS IP and the neutrino detectors
- Consider $pp \rightarrow W \rightarrow l\nu, \nu Z \rightarrow lZ'$

- Triggered by the prompt lepton from W-boson decay (ATLAS)
 - $p_T^e > 27.3$ GeV and $|\eta^e| < 2.5$
 - $p_T^\mu > 27$ GeV and $|\eta^\mu| < 2.5$
- Helicity flip suppression is strong:

$$\epsilon_{\rm h.~f.} = m_{\nu}^2 / (4E_{\nu}^2)$$

Neutrino detectors: computation

neutrino detectors	material	A [cm ²]	m _{det} [ton]	η_{min}	η_{\max}	${\cal L}$ [fb $^{-1}$]
FASER ν	tungsten	25 imes 25	1.2	8.5	∞	150
SND@LHC	tungsten	40 imes 40	0.85	7.2	8.4	150
FASER ₂	tungsten	40 imes 40	20	8.5	∞	3000
AdvSND(far)	tungsten	100 imes 55	5	7.2	8.4	3000
FLArE-10	liquid argon	100 imes 100	10	7.5	∞	3000
FLArE-100	liquid argon	160 imes160	100	7	∞	3000

- $\sigma_{\nu Z}$ extracted from <u>arXiv:1908.02310</u> (FASER collaboration)
- $\langle \epsilon_{\rm h.~f.} \cdot P_{\rm scatt.} \rangle$ obtained with Pythia8 Monte-Carlo simulation
- $\epsilon_{
 m trigger} \sim 40\%~(m_{
 u}=0.1~{
 m eV})$
- Scattering detection efficiency assumed to be 1

Kinematical distributions

三日 のへの

< ロ > < 同 > < 回 > < 回 > < 回 > <

$\epsilon_{\mathsf{window}}$

$\epsilon_{\sf window}$	e ⁺	e	μ^+	μ^-
$FASER\nu$	$1.3 imes10^{-6}$	$6.0 imes10^{-7}$	$1.7 imes10^{-6}$	$5.8 imes10^{-7}$
SND@LHC	$1.5 imes10^{-5}$	$6.0 imes10^{-6}$	$2.0 imes10^{-5}$	$4.6 imes10^{-6}$
FASER _{v2}	$1.3 imes10^{-6}$	$6.0 imes10^{-7}$	$1.7 imes10^{-6}$	$5.8 imes10^{-7}$
AdvSND(far)	$1.5 imes10^{-5}$	$6.0 imes10^{-6}$	$2.0 imes10^{-5}$	$4.6 imes10^{-6}$
FLArE-10	$7.6 imes10^{-6}$	$5.4 imes10^{-6}$	$1.3 imes10^{-5}$	$1.7 imes10^{-6}$
FLArE-100	$2.7 imes10^{-5}$	$8.9 imes10^{-6}$	$3.3 imes10^{-5}$	$8.1 imes10^{-6}$

シック 正正 《日》《日》 (日)

Signal-event numbers for pure SM CC interactions

$N_S^{ u}$	e^+	e	μ^+	μ^-
$FASER\nu$	$1.1 imes10^{-32}$	$7.0 imes10^{-32}$	$3.1 imes10^{-32}$	$3.4 imes10^{-32}$
SND@LHC	7.5×10^{-32}	9.0×10^{-32}	7.6×10^{-32}	$8.4 imes10^{-32}$
FASER ₂	$1.5 imes10^{-30}$	$9.1 imes10^{-31}$	$4.1 imes10^{-30}$	$4.4 imes10^{-30}$
AdvSND(far)	$2.6 imes10^{-30}$	$3.1 imes10^{-30}$	$2.6 imes10^{-30}$	$2.9 imes10^{-30}$
FLArE-10	$7.6 imes10^{-31}$	$3.1 imes10^{-30}$	$1.6 imes10^{-30}$	$1.7 imes10^{-30}$
FLArE-100	$1.8 imes10^{-29}$	$2.0 imes10^{-29}$	$1.5 imes10^{-29}$	$1.8 imes10^{-29}$

Table: SM interactions with an active neutrino with a mass of 0.1 eV

- 30 orders of magnitude smaller than 1!
- The main cause is the helicity flip:

 $\epsilon_{\rm h.~f.}=m_{\nu}^2/(4E_{\nu}^2)\sim 10^{-25}$ for $m_{\nu}=0.1$ eV and $E_{\nu}=100$ GeV

 Consider LNV dim-7 operators instead: production via W-boson CC & decay via ε_{ij}(LⁱCγ_μe)(d
 ⁱγ^μu)H^j

ション ふぼく チョット キョン ひょう

Signal-event numbers with the LNV dim-7 operator

$N_S^{ u}$	e^+	e	μ^+	μ^-
$FASER\nu$	$1.5 imes10^{-14}$	$8.5 imes10^{-15}$	$7.7 imes 10^{-15}$	$2.0 imes 10^{-15}$
SND@LHC	$2.2 imes 10^{-14}$	$1.5 imes10^{-14}$	$3.7 imes10^{-14}$	9.3×10^{-15}
$FASER\nu 2$	$2.0 imes10^{-12}$	$1.3 imes10^{-12}$	$1.0 imes10^{-12}$	$2.4 imes10^{-13}$
AdvSND(far)	$7.7 imes10^{-13}$	$5.0 imes10^{-13}$	$1.2 imes10^{-12}$	$2.1 imes10^{-13}$
FLArE-10	$6.6 imes10^{-13}$	$3.6 imes10^{-13}$	$1.0 imes10^{-12}$	$4.6 imes10^{-14}$
FLArE-100	$6.2 imes 10^{-12}$	2.9×10^{-12}	8.5×10^{-12}	1.3×10^{-12}

Table: $\epsilon_{ij}(L^i C \gamma_\mu e)(\overline{d}\gamma^\mu u)H^j$ with a coefficient $1/\Lambda^3 \sim 1/(5 \text{ TeV})^3$

- Unfortunately still more than 10 orders of magnitude below 1!
 - W-boson production rate not big enough
 - Scattering probability in general small

LLP detectors

• Sterile neutrinos:

$$\mathcal{L} = \frac{g}{\sqrt{2}} V_{\alpha j} \, \bar{l}_{\alpha} \gamma^{\mu} P_L N_j W_{\mu}^- + \frac{g}{2 \cos \theta_W} \, \sum_{\alpha, i, j} V_{\alpha i}^L V_{\alpha j}^* \overline{N_j} \gamma^{\mu} P_L \nu_i Z_{\mu} + \text{h.c.}$$

• Signal process: $pp
ightarrow W^{\pm}
ightarrow e^{\pm}N, N
ightarrow e^{\pm}M^{\mp}$ or $e^{\pm}jj$

$$N_{S}^{N} = \frac{\sigma_{\nu}}{\mathsf{BR}(W \to e\,\nu)} \cdot \mathsf{BR}(W^{\pm} \to e^{\pm} N) \cdot \mathcal{L} \cdot \epsilon_{\mathsf{trigger}} \cdot \langle P_{\mathsf{decay}} \rangle \cdot \mathsf{BR}(N \to e^{\pm} jj/M^{\mp})$$

- $\epsilon_{\rm trigger} \sim 40\%$ for m_N between 0.2 and 5 GeV
- BR($N \to e^{\pm} j j / M^{\mp}$): 20% 30%
- $\langle P_{decay} \rangle$ obtained with Pythia8 Monte-Carlo simulation & exp. func.

• Event correlation, measurement of leptons' charge final-state

Discussion of LLP far detectors

• Can't do:

- CODEX-b: $\eta \in [0.2, 0.6]$ while LHCb $\eta_l \in [2, 5]$
- MoEDAL-MAPP: negative η range
- MATHUSLA: > 100 thousand m³, too large to install magnet (cost)
- FACET: enclosing the beam pipe, cannot install magnets
- Maybe:
 - ANUBIS: no such intrinsic issues, but still a bit too large
- Should do:
 - FASER(2): no such intrinsic issues and small enough
- Still need to install required hardware: money, space, engineers, ...
- Could consider a trigger simply by a signal in FASER(2) or ANUBIS

Sensitivity results for LLP detectors (if no discovery)

-

Summary

- Stable or very long-lived active/sterile neutrinos cannot be used for observing LNV at LHC local detectors
- Proposed to use LHC far detectors to look for same-sign leptons
 - Neutrino detectors with active neutrino-nucleus charged-current scattering: hopeless because of helicity flip, low production rates of v from N

hopeless because of helicity flip, low production rates of ν from W, or low scattering probability

• LLP detectors with sterile neutrino displaced decays: hopeful, if upgrades can be implemented, which is hard

Thank You!

A = A = A = A = A = A

Back-up slides

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Why mesons do not work?

- Mesons are light and soft at the LHC
- The prompt charged lepton is therefore also soft
- Impossible to get a hard enough prompt lepton together with a forward-traveling energetic neutrino
- Even in the forward direction, hundreds or up to thousands of tracks originate from pile-up effects, multi-parton interactions, as well as proton beam remnants ⇒ can't do event correlation

A sample UV-complete realization of the dim-7 operator

- *t*-channel leptoquark $\Rightarrow \nu Z$ scattering
- Leptoquarks: $S_d \sim ({f 3},{f 1})_{-1/3}$ and $S_Q \sim ({f 3},{f 2})_{1/6}$

$$\mathcal{L} \supset -\left(g_{ue}\overline{u_R}e_R^c S_d + g_{Ld}\overline{d_R}L^T \epsilon S_Q + \mu S_Q^{\dagger}S_dH\right) + \text{h.c.}\dots$$

$$\begin{pmatrix} \sqrt{1 - \frac{v^2 \mu^2}{2(m_d^2 - m_Q^2)^2}} & \frac{v\mu}{\sqrt{2}(m_d^2 - m_Q^2)} \\ \frac{-v\mu}{\sqrt{2}(m_d^2 - m_Q^2)} & \sqrt{1 - \frac{v^2 \mu^2}{2(m_d^2 - m_Q^2)^2}} \end{pmatrix} \equiv \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

$$\hat{m}_{d}^{2} = m_{d}^{2} + \sin^{2}\theta(m_{d}^{2} - m_{Q}^{2})
 \hat{m}_{Q^{-}}^{2} = m_{Q}^{2} - \sin^{2}\theta(m_{d}^{2} - m_{Q}^{2})
 \hat{m}_{Q^{+}}^{2} = m_{Q}^{2}$$

$$\epsilon_{ij}(L^i C \gamma_\mu e)(\overline{d}\gamma^\mu u)H^j \Rightarrow \frac{1}{\Lambda^3} = \frac{\mu g_{uegLe}}{2 m_Q^2 m_Q^2}$$

Computation of $\sigma_{\nu Z}$ for the dim-7 operator

- Implement the model with FeynRules into UFO format (with Majorana ν)
- MadGraph5: $p \nu_{e/\mu} \rightarrow j e^+/\mu^+$ and $p \nu_{e/\mu} \rightarrow j e^-/\mu^-$, fixing the neutrino beam polarization to be 100% left-handed and right-handed, respectively, and setting the incoming nucleon beam at rest
- $Q^2 = 2 x y E_{\nu} m_{p/n}$
 - x = 0.1 frac. of the p/n's mom. carried by the quark in the initial state
 - y = 0.5 frac. of the neutrino mom. transferred to the hadronic system
 - run_card.dat: the renormalization scale and the factorization scale of the proton/neutron target = $\sqrt{Q^2}$.
- Scan over $E_{
 u} \in [10 \; {
 m GeV}, 10 \; {
 m TeV}]$ to get the scattering cross sections

First-generation of quarks only:

- main matter content of nucleons ⇒ the largest scattering cross sections
- such dim-7 operators could induce radiatively neutrino masses, the strength of which is proportional to the masses of the fermion fields

Z.S. Wang (wzs@mx.nthu.edu.tw)

Leptonic decay branching ratio of W

• σ_{ν} for $pp \rightarrow W^{\pm} \rightarrow l^{\pm}\nu$ measured at ATLAS [1603.09222]

• BR
$$(W^{\pm} \to e^{\pm} N) = \frac{1}{\Gamma_W} \frac{G_F}{\sqrt{2}} \frac{m_W^3}{12\pi} |V_{eN}|^2 \left(2 + \frac{m_N^2}{m_W^2}\right) \cdot \left(1 - \frac{m_N^2}{m_W^2}\right)^2$$

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ 三回 ののの