Searching for long-lived particles at the LHC and beyond: 13th workshop of the LLP community

New results for searches of exotic decays with NA62 in beam-dump mode

European Research Council Established by the European Commission Alina Kleimenova

(EPFL, Lausanne)

on behalf of NA62 Collaboration

CERN 2023, 21st June

Outline

- Overview of the NA62 experiment
- Dark Photon (A') searches in NA62
- Results for $A' \rightarrow l^+ l^$ searches
- Summary

The NA62 experiment

~30 institutes, ~200 participants

NA62 is a fixed-target experiment at CERN SPS

Main goal: measure $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ with 10% precision using novel kaon-in-flight technique

Current theoretical prediction:

 $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$ [Buras et al., JHEP11(2015)033] **Experimental values:** $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$ E949/E787[Phys. Rev D 79, 092004 (2009)] $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ $= (10.6^{+4.0}_{3.4 stat} \pm 0.9_{syst}) \times 10^{-11}$ NA62[JHEP06 (2021) 093]

Broader physics programme:

- Rare/forbidden kaon decays
- Searches for **exotic particles** in kaon decays and in **beam dump** mode

Detector overview

Performances:

- GTK-KTAG-RICH time resolution: $\mathcal{O}(100 \text{ ps})$
- $\mathcal{O}(10^{4})$ background suppression from kinematics
- $\mathcal{O}(10^{\prime})$ muon rejection for $15 < p(\pi^+) < 35$ GeV
- $\mathcal{O}(10^8) \pi^0$ rejection of for $E(\pi^0) > 40$ GeV

[NA62 Detector Paper, JINST 12 (2017), P05025]

The NA62 experiment

RICH

Target

Time scale:

- 2014 Pilot run
- **2015** Commissioning run: ~1% of design intensity, no beam tracker
- **2016** Commissioning run + Physics run (30 days)
- 2017 Physics run (161 days)
- 2018 Physics run (217 days)
- **2019-2020** LS2
- 2021 Physics run (85 days, ~10 days for beam dump)

Beam

- 2022 Physics run (203 days)
- 2023 Physics run ongoing

Triggers in beam dump:

Spectrometer

- Single track: 1 hit in CHOD (~14 kHz)
- Two-track trigger: two hits in CHOD (~18 kHz)
 - Control trigger: LKr-based (~4 kHz)

21/06/2023

Search motivation

Several New Physics models proposed for study:

- Vector portal \rightarrow Dark Photon
- Scalar Portal → Dark Scalar
- Neutrino portal \rightarrow HNL
- Axion portal \rightarrow ALP

Dark Photon (DP) model introduces a new vector field $F'_{\mu\nu}$ symmetric under U(1) transformation which feebly interacts with the SM fields.

Kinetic-mixing interaction with the SM field $B_{\mu\nu}$:

$$\mathcal{L} \supset -\varepsilon \frac{1}{2\cos\theta_W} F'_{\mu\nu} B_{\mu\nu}$$

Mass of DP and coupling are free parameters.

In the mass range <700 MeV, DP decay width is dominated by lepton-antilepton final states

Sensitivity of NA62 to the DP

Two production mechanisms are in action in proton-nucleus interaction scenario:

- Bremsstrahlung production in $pN \rightarrow XA'$
- Production in meson decay as $pN \rightarrow XM, M \rightarrow A'\gamma(\pi^0)$, where $M = \pi^0, \omega, \rho$ etc.

In 2021, NA62 collected (1.40 \pm 0.28) \times 10^{17} POT.

Assuming mass and coupling to be free parameters, lepton decay mode of DP, geometrical acceptance of NA62 and 0 events observed, evaluate expected 90%CL upper limits

*The grey underlying exclusion is the one adapted by the PBC and taken from DarkCast [JHEP06(2018)004] Several limits may differ from PBC and are taken by DarkCast team from [Phys. Rev. Lett. 126, no.18, 181801 (2021)]

Analysis strategy for $A' \rightarrow \mu^+ \mu^-$ search

The signal signature:

 Lepton-antilepton vertex reconstructed within the NA62 decay region and pointing back to the proton beam interaction point at the TAXes.

Event selection:

- reconstructed track quality
- track timing coincidence with the trigger
- muon identification with calorimeter and muon detector
- no in-time activity at large angle veto detectors (LAV) to reduce possible selection of vertices derived by interaction of incoming muons with the material in the LAVs.
- Signal region (SR) selection

CR and SR kept masked until the analysis strategy is frozen

 CDA_{TAX} – closest distance of approach between the beam direction at the TAX entrance and $\mu^+\mu^-$ pair direction $\sigma_{CDA} = -7$ mm

 Z_{TAX} – longitudinal position, $\sigma_Z = -5.5$ m

Signal region: 6 < Z_{TAX} < 40 m & CDA_{TAX}< 20 mm

Signal efficiency and expected DP yield

Distribution of track time difference

(CR&SR masked)

(CR&SR masked)

Background studies

Combinatorial background

Background from random superposition of two uncorrelated "halo" muons

- Selected single tracks in a data sample orthogonal to the one used for the analysis
- Track pairs are artificially built to emulate a random superposition
- Apply same event selection criteria as in the analysis
- Each track pair has a weight independent on the rate to account for the 10 ns time window

Prompt background

Background from secondaries of a muon interaction with the traversed material

- Muon kinematic distributions extracted from selected single muons in data (backward MC)
- To correct the spread induced by the backward-forward process (straggling, multiple scattering) an unfolding technique is applied to better reproduce the data distributions.
- Relative uncertainty of MC expectation ~100%

	Combinatorial	Prompt@90% CL	Upstream prompt@ 90%CL
CR	0.17 ± 0.02	< 0.033	< 0.052
SR	0.016 ± 0.002	< 0.003	< 0.005

Prompt background negligible with respect to combinatorial (UL @ 90%CL is 30% of combinatorial)

Data-MC comparison: signal sample, SR open

1 event observed Counting experiment with 2.4σ global significance Signal shape was not taken into account for the significance

Final result for $A' \rightarrow \mu^+ \mu^-$

Model-independent limits on $a \rightarrow \mu^+ \mu^-$ process

- Assume that a is a pseudoscalar(scalar) particle [Phys. Lett. B 790 (2019) 537]
- Assume mass M_a , lifetime τ_a and coupling to be independent parameters \rightarrow Set limits in $BR(B \rightarrow K^{(*)}a) \times BR(a \rightarrow \mu^+\mu^-) \vee \tau_a$ parameter space for each mass separately

Analysis strategy for $A' \rightarrow e^+e^-$ search

Event selection:

IFIN

- reconstructed track quality
- track timing coincidence with the trigger
- decay region & PID optimisation
- no in-time activity in muon veto detector MUV3
- no in-time activity at large angle veto detectors (LAV) and ANTIO to reduce possible selection of vertices derived by interaction of incoming muons with the material in the LAVs.
- Signal region (SR) selection -> new signal region definition

CR and SR kept masked until the analysis strategy is frozen

 CDA_{TAX} – closest distance of approach between the beam direction at the TAX entrance and e^+e^- pair direction $\sigma_{CDA} =$ ~7 mm

 Z_{TAX} – longitudinal position, $\sigma_Z = -5.5$ m

Signal region: Ellipse centered around Z_{TAX} = 23 m and CDA_{TAX} = 0 mm

21/06/2023

Background studies

- Combinatorial component estimated using the same technique as in the $\mu\mu$ analysis, now applying electron PID: $N_{exp} < 9 \times 10^{-4}$
- **Prompt background** is the dominant component in this analysis \rightarrow use dedicated MC developed for the $\mu\mu$ analysis. Expected number of events estimated using rejection factors η of LAV, ANTIO, SR and CR cuts obtained from MC.

Data, SR and CR masked

NEW

Evaluation of expected background

Data, no LAV/ANTIO cuts, SR&CR

Fraction of events in CR/SR ~ 0.01

Condition	$N_{exp} \pm \delta N_{exp}$	$1 - \eta$	
e^+e^- PID	59.9 <u>+</u> 6.7	—	
e^+e^- PID, LAV-ANTIO	0.72 ± 0.72	$0.012\substack{+0.020\\-0.008}$	
e^+e^- PID, CR	0.51 <u>+</u> 0.51	$0.009\substack{+0.018\\-0.006}$	
e^+e^- PID, SR	0.47 ± 0.47	$0.008\substack{+0.018\\-0.006}$	

$$\begin{split} N_{bkg}^{CR(SR)} &= N_{bkg}^{FV} \Big|_{CR\&SR \ masked} \times \\ &\times \frac{1}{\eta_{CR} + \eta_{SR} - 1} \times \\ &\times (1 - \eta_{LAV - ANTI0}) \times \\ &\times (1 - \eta_{CR(SR)}) \end{split}$$

Expected events in CR and SR: $N_{bkg}^{CR} = 0.0097_{-0.009}^{+0.049} @ 90\% CL$ $N_{bkg}^{SR} = 0.0094_{-0.009}^{+0.049} @ 90\% CL$

Final result for $A' \rightarrow e^+e^-$

21/06/2023

NEW

New results for searches of exotic decays with NA62 in beam-dump mode

20

Results for $A' \rightarrow l^+ l^-$

21/06/2023

New results for searches of exotic decays with NA62 in beam-dump mode

21

Summary

- The preliminary result on search for production and decay of an exotic particle from data collected by the NA62 experiment in beam-dump mode has been presented
- A cut-based counting experiment blind analysis to search for $A' \rightarrow l^+l^-$ has been performed on the data collected in 2021.
- With $(1.4 \pm 0.28) \times 10^{17}$ POT a 90% CL upper limits have been set, exploring new regions of the parameter space.
- Searches for decays of exotic particles to $\gamma\gamma$, $\pi^+\pi^-\gamma$ final states, using the data collected in 2021, are ongoing.
- NA62 intends to take 10¹⁸ POT in beam dump in 2022-2025 with interesting perspectives on dark photons, ALPs, dark scalars and HNLs

21/06/2023

Backup slides

21/06/2023

New results for searches of exotic decays with NA62 in beam-dump mode

24

ALPs in beam dump (projections)

21/06/2023

Observed event

μ+-μ

21/06/2023

Data-MC comparison: signal sample, CRs open

Data-MC comparison: control samples

	$N_{exp} \pm \delta N_{exp}$	N _{obs}	$p(N \ge N_{obs})$	$p(L \le L_{obs})$		$N_{exp} \pm \delta N_{exp}$	N _{obs}	$p(N \ge N_{obs})$	$p(L \le L_{obs})$
Outside CR	62.5 ± 9.4	53	0.79	0.46	Outside CR	9.1 ± 1.4	8	0.67	0.88
CR	0.46 ± 0.07	0	1.0	1.0	CR	0.050 ± 0.007	0	1.0	1.0
SR	0.040 ± 0.006	0	1.0	1.0	SR	0.005 ± 0.001	0	1.0	1.0

Invariant mass resolution $M_{\mu\mu}$

Invariant mass resolution M_{ee}

