Updating bounds on R-parity-violating supersymmetry with a long-lived light bino

Martin Schürmann

in collaboration with

Prof. Herbi Dreiner, Ph.D. Dominik Köhler Saurabh Nangia Zeren Simon Wang, Ph.D.

Bethe Center for Theoretical Physics Paper to be released very soon!

Table of Contents

- 1. R-parity violating MSSM with a light bino
- 2. Heavy neutral leptons
- 3. Recasting procedure
- 4. Updating RPV-MSSMwLB bounds: Examples
- 5. Conclusions

1. R-parity violating MSSM with a light bino

- 1.1 R-parity violating (RPV-) MSSM ...
 - LHC has ruled out the MSSM up to $\mathcal{O}(100 \,\mathrm{GeV} \sim 1 \,\mathrm{TeV})$
 - Are we missing something?

$$R = (-1)^{3(B-L)+2S}$$

$$W_{\rm RPV} = \kappa_i L_i H_u + \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k$$

1. R-parity violating MSSM with a light bino

1.1 R-parity violating (RPV-) MSSM ...

- LHC has ruled out the MSSM up to $\mathcal{O}(100 \,\mathrm{GeV} \sim 1 \,\mathrm{TeV})$
- Are we missing something?

$$W_{\rm RPV} = \kappa_i L_i H_u + \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k$$

1. R-parity violating MSSM with a light bino

1.2 ... with a light bino

LEP bound on LSP neutralino: $m_{\tilde{\chi}_1^0} > 46 \,\text{GeV}$, assuming $M_1 \approx \frac{1}{2} M_2$

• $M_1 \longrightarrow M_2$ \longrightarrow Neutralino mass unconstrained!

Cosmologically excluded stable neutralino: $0.7 \,\mathrm{eV} < m_{\tilde{\chi}_1^0} < 24 \,\mathrm{GeV}$

2. Heavy neutral leptons

2.1 Heavy neutral leptons

• Simple theory with one kinematically relevant HNL:

$$\mathscr{L} \supset -\frac{g}{\sqrt{2}} U_4^i W_\mu^- \ell_i^\dagger \bar{\sigma}^\mu N - \frac{g}{2c_W} U_4^i Z_\mu \nu_i^\dagger \bar{\sigma}^\mu N + \text{h.c.}$$

where
$$U_i \equiv U_4^i \equiv (Y_{\nu}^*)_1^i \frac{v}{\sqrt{2}M}$$

- 3.1 The phenomenology connecting the light bino LSP and the HNL
 - Bilinears $(\kappa_i L_i H_u)$: Integrating out the heavy higgsinos in the neutral lepton sector yields $a' (\dots v_d \kappa_i) = 0$

- 3.1 The phenomenology connecting the light bino LSP and the HNL
 - Phenomenological level:

Trilinear Yukawas ($LL\bar{E}, LQ\bar{D}$)

cause effects similar to the HNL

theory!

HNLs can be produced from meson decays

Translate bounds on HNLs to bounds on RPV-MSSM, using

- Direct decay searches
- Displaced vertex searches

RPV-MSSM opens new, invisible particle decay channels

Translate invisible widths to bounds on RPV-MSSM

MSUEY T(P→inv.) < ... ~

Bilinears produce $U_4^i = \frac{g'}{2m_{\tilde{\chi}_1^0}} \left(v_i - \frac{v_d \kappa_i}{\kappa^0} \right)$ 10^{-2} 10^{-4} $\left(v_i - rac{v_{dK^i}}{\kappa^0}
ight)^2 \left[\mathrm{GeV}^2
ight]$ 10^{-6} 10^{-8} i = e $i = \mu$ $= \tau$ 10^{-10} 200400 600 800 1000 0 $m_{\tilde{\chi}_1^0}$ [MeV]

Example 1: $K^{\pm} \rightarrow \ell_a^{\pm} + \tilde{\chi}_1^0$

- Couplings: $\lambda'_{a12}, a \in \{1, 2\}$
- Peak search
 - NA62 [3,4]

• **KEK** [5, 6]

Example 2: $\tau^{\pm} \rightarrow \pi^{\pm} + \tilde{\chi}_{1}^{0}$ $\tilde{\chi}_{1}^{0} \rightarrow \nu_{\tau} + \{\pi^{0}, \rho^{0}, \eta, \eta', \omega\}$

- Coupling: $\lambda'_{a11}, a \in \{1, 2\}$
- Beam-dump: Displaced vertex search
 - **DUNE** [7]

Example 3: $B^{\pm}(B^0) \rightarrow \ell_i^{\pm}(\nu_{\ell_i}) + \tilde{\chi}_1^0$ $\tilde{\chi}_1^0 \rightarrow \nu_{\ell_i} + \{\phi, \eta, \eta'\}$

- Couplings
 - Production: $\lambda'_{i13}, i \in \{1, 2, 3\}$
 - $\circ \quad \text{Decay:} \ \ \lambda_{i11}' \lor \lambda_{i22}', \ i \in \{1,2,3\}$
- Collider: Displaced vertex search
 - \circ FASER [8]

Example 4: $K_L^0 \to \text{inv.}$

- Couplings: $\lambda'_{i12} \lor \lambda'_{i21}, i \in \{1, 2, 3\}$
- $\Gamma(K_L^0 \to \text{inv.})$ derived from the current uncertainty on Γ_{tot}

5. Conclusions

- **RPV-MSSM with a light bino mimics HNL phenomenology**
 - directly (through bilinears)
 - indirectly (through trilinears)
- **RPV bounds** can be extended by several orders of magnitude by
 - Recasting current HNL bounds
 - Considering invisible particle decays
- **Related work:** Rebeca Beltrán *et al.* [arXiv:2302.03216]

Enrique Fernández-Martínez et. al [arXiv:2304.06772]

Heavy neutral leptons

0.1 Heavy neutral leptons

•
$$\mathscr{L} \supset i\hat{N}^{\dagger}\bar{\sigma}^{\mu}\partial_{\mu}\hat{N} - \left[(Y_{\nu})^{i}_{\alpha} \left(\Phi^{0}\hat{\nu}_{i}\hat{N}^{\alpha} - \Phi^{+}\ell_{i}\hat{N}^{\alpha} \right) + \frac{1}{2}M^{\alpha}_{\beta}\hat{N}_{\alpha}\hat{N}^{\beta} + \text{h.c.} \right]$$

• EWSB: Neutral lepton mass matrix,

$$M_{\nu N} = \begin{pmatrix} \mathbb{O}_{3 \times 3} & M_D \\ M_D^T & M \end{pmatrix} \quad \text{where} \quad (M_D)^i_{\alpha} = (Y_{\nu})^i_{\alpha} v / \sqrt{2}$$

• Diagonalize with U. One kinematically relevant HNL: $U_i \equiv U_4^i \equiv (Y_{\nu}^*)_1^i \frac{v}{\sqrt{2}M}$

•
$$\mathscr{L} \supset -\frac{g}{\sqrt{2}} U_4^i W_\mu^- \ell_i^\dagger \bar{\sigma}^\mu N - \frac{g}{2c_W} U_4^i Z_\mu \nu_i^\dagger \bar{\sigma}^\mu N + \text{h.c.}$$

Experiments

0.2 HNL searches: Direct decay

Search Strategy	Experiment	Status	HNL Mixing	HNL Mass region
	PIENU PIONEER	curr. proj.	$egin{array}{c} U_e \ U_\mu \end{array}$	$65\text{-}153\mathrm{MeV}$ $15.7\text{-}33.8\mathrm{MeV}$
	PIONEER	proj.	$ U_e $	$65\text{-}135\mathrm{MeV}$
Peak	SIN	curr.	$ U_{\mu} $	$1\text{-}16\mathrm{MeV}$
	NA62	curr.	$ U_{\mu} $	$144\text{-}462\mathrm{MeV}$
	NA62	curr.	$ U_e $	$200\text{-}384\mathrm{MeV}$
	KEK	curr.	$ U_{\mu} $	$160\text{-}230\mathrm{MeV}$
	KEK	curr.	$ U_{\mu} $	$70\text{-}300\mathrm{MeV}$
Branching Ratio	PIENU	curr.	$ U_e $	$0-65\mathrm{MeV}$
	PIONEER	proj.	$ U_e $	$0\text{-}65\mathrm{MeV}$

Experiments

0.3 HNL searches: Displaced vertices

Search Strategy	Experiment	Status	HNL Mixing	HNL Mass region
Beam-dump	DUNE	proj.	$ U_e , U_{\mu} , U_{ au} $	$0\text{-}1968.34\mathrm{MeV}$
	T2K	curr.	$ U_e , U_\mu $	$10\text{-}490\mathrm{MeV}$
	CHARM	curr.	$ U_e , U_{\mu} $	$300\text{-}1869.65\mathrm{MeV}$
	CHARM	curr.	$ U_{\tau} $	$290\text{-}1600\mathrm{MeV}$
	NuTeV	curr.	$ U_{\mu} $	$259\text{-}2000\mathrm{MeV}$
	MicroBooNE	curr.	$ U_{\mu} $	$20\text{-}200\mathrm{GeV}$
	BEBC	curr.	$ U_e , U_\mu $	$500\text{-}1750\mathrm{MeV}$
	BEBC	curr.	$ U_{\tau} $	$100\text{-}1650\mathrm{MeV}$
	SK	curr.	$ U_e , U_\mu $	$150\text{-}400\mathrm{MeV}$
Collider	FASER	proj.	$ U_e , U_{\mu} , U_{\tau} $	$0\text{-}6274.9\mathrm{MeV}$
	MoEDAL-MAPP1	proj.	$ U_e $	$0\text{-}6274.9\mathrm{MeV}$
	BaBar	curr.	$ U_{ au} $	$100\text{-}1360\mathrm{MeV}$

Experiments

0.4 Missing energy searches

Search Strategy	Experiment	Status	BR	Bino Mass region
Missing Energy	NA62 BaBar	curr. curr.	$\begin{array}{l} {\rm BR}(\pi^0 \to {\rm inv.}) \\ {\rm BR}(B^0 \to {\rm inv.}) \end{array}$	$\begin{array}{c} 0\text{-}134.97\mathrm{MeV} \\ 0\text{-}5279.65\mathrm{MeV} \end{array}$

Example 0: $\pi^{\pm} \rightarrow \ell_a^{\pm} + \tilde{\chi}_1^0$

- Couplings: $\lambda'_{a11}, a \in \{1, 2\}$
- Peak search + Branching ratio search
 - \circ **PIENU** [1]
 - PIONEER [2]

