

Search for inelastic dark matter with CMS

Andre Frankenthal (Princeton)

On behalf of the CMS Collaboration

LLP13 Workshop at CERN, June 2023

arXiv: 2305.11649

р

 \diamond Dark matter states χ_2 and χ_1 with near mass degeneracy \Rightarrow Predominant inelastic (off-diagonal) coupling between χ_2 and χ_1 $\overline{\psi}\gamma_{\mu}\psi \simeq i(\overline{\chi}_{1}\overline{\sigma}_{\mu}\chi_{2} - \overline{\chi}_{2}\overline{\sigma}_{\mu}\chi_{1}) + \frac{\delta}{2m}(\overline{\chi}_{2}\overline{\sigma}_{\mu}\chi_{2} - \overline{\chi}_{1}\overline{\sigma}_{\mu}\chi_{1}).$

 $\leftrightarrow \rightarrow$ By adding small Majorana mass term

 χ_2

Izaguirre, Krnjaic & Shuve, PRD 93 (2015) 063523

Vector current couples χ_2 to χ_1 since $\delta/m \ll 1$ with δ the mass splitting

 \diamond Kinetic mixing ϵ between γ, Z and dark photon A'Compatible with observed thermal-relic DM abundance

Smith & Weiner, PRD 64 (2001) 043502

3

 \diamond Dark matter states χ_2 and χ_1 with near mass degeneracy \Rightarrow Predominant inelastic (off-diagonal) coupling between χ_2 and χ_1

- $\leftrightarrow \rightarrow$ By adding small Majorana mass term

Inelastic dark matter

Smith & Weiner, PRD 64 (2001) 043502

 \diamond Kinetic mixing ϵ between γ, Z and dark photon A'Compatible with observed thermal-relic DM abundance

Parameter	Symbol	Values	Notes
χ_1 mass	m_1	3—80 GeV	Experiment reach and theory interest
χ_2 - χ_1 mass splitting	Δ	$\{0.1, 0.4\}m_1$	
χ_2 lifetime	сτ	1—1000 mm	
Dark photon mass	$m_{A'}$	3 m ₁	$m_{A'}\gtrsim m_1+m_2$
Dark sector α	α_D	$\{0.1, a_{EM}\}$	$\alpha_D \propto 1/\varepsilon^2$
Kinetic mixing	Е	Fixed by others	$\sigma_{prod} \propto \varepsilon^4$

Izaguirre, Krnjaic & Shuve, PRD 93 (2015) 063523

- Projected sensitivity from theory ("LHC displaced" curves)
- Lower y sensitivity for higher mass splittings, but thermal-relic DM curve also shifts up
- Lower mass sensitivity range limited by the ability to produce two muons

The CMS detector

- Small mass difference (compressed scenario) → soft decay products
- ↔ Decay width of χ_2 proportional to Δ^5 and $\epsilon^2 \rightarrow$ LLP and displaced signatures
- ♦ Production of two $\chi'_1 s \rightarrow$ Significant MET activity ♦ Soft decay muons \rightarrow Trigger using MET with ISR jet

CMS transverse cross-section

Displaced muon reconstruction

(13 TeV)

- CMS has a dedicated displaced muon reconstruction (DSA):
 - Use only muon chamber hits
 - Rely on cosmic tracking seeds
 - No beam spot constraints on the fit
- High efficiency at large displacements from interaction point
- Trade-off is worse momentum and position resolution
- ♦ Prefer standard muon objects when they are available

Muon object matching

Strategy:

- Require 2 displaced muon objects as baseline
- Look for geometric match between displaced and standard muons
- Split events passing baseline into 3 categories: 0, 1, or 2 muons matched

Benefits:

- Maximize information (resolution)
- SM backgrounds fall largely in 1- or 2-match categories
- Improve signal discrimination in 0-match

Event selection and efficiencies

- \diamond Backgrounds have poor(er) MC modeling \rightarrow predict yields from data itself
- Modified "ABCD" procedure to simultaneously fit signal and background yields
- Fit all three match categories together
- Use unique iDM topology to enhance sensitivity

 $\begin{array}{l} \Delta\phi(\text{MET},\mu^+\mu^-) < 0.5 : \text{dimuon-MET alignment} \\ \Delta R(\mu^+\mu^-) < 0.9 : \text{dimuon alignment} \\ \min(d^A_{xy},d^B_{xy}) > \{3,0.02,0.02\} \text{ cm: minimum} \\ \text{impact parameter between both muons} \end{array}$

0-match

0 muons matched

10

10⁶

CMS

Preliminary

Events / bin

11

No observed excess over the predicted background Can place upper limits on production cross section

138 fb⁻¹ (13 TeV)

1-match 0-match 2-match Predicted 1.2 ± 0.6 0.5 ± 0.2 0.5 ± 0.2 Observed 2 0 0

10⁷

10⁶

CMS

Preliminary

1-match

1 muon matched

• Upper limits on $\sigma(pp \to A \to \chi_1 \chi_2 \to \chi_1 \chi_1 \mu^+ \mu^-)$ for 10% and 40% mass splitting scenarios

- ♦ Resonance enhancement around $m_1 = 30$ GeV ($m_{A'} = 90$ GeV $\approx m_Z$)
- First iDM parameter space exclusion at the LHC!
- (Comparison with theory in backup)

- \diamond Limits vs. m_1 for various lifetimes
- \diamond Cross section enhancement clearly visible at $m_1 = 30$ GeV
- High sensitivity to the 10% mass splitting scenario (40% splitting in backup)
- Higher experimental sensitivity to larger masses (more energetic muons)

Limits vs. $c\tau$

- Selection of 1D limits vs. proper lifetime for different masses
- Typical U-shaped curve with higher sensitivity to moderate lifetimes
 - Signal efficiency drops at high displacement
 - Backgrounds are more challenging at low displacement
- Production cross section inversely proportional to lifetime, mass splitting, and mass (apart from the Z resonant enhancement)

Conclusions

- Presented first dedicated collider search for inelastic dark matter
- Model is compatible with observed thermal-relic DM abundances
- Higher experimental sensitivity to lower mass splitting scenarios
- Signal efficiency enhanced with dedicated displaced muon reconstruction
 Still quite low efficiencies for some signal hypotheses (10⁻⁴ 10⁻²)
 Aided by large predicted iDM production cross sections
- Exclusion limits placed for 10% and 40% mass splitting scenarios
- Some future directions:
 - \cdot Study electron channel with dedicated low- p_T electron reconstruction
 - Study dedicated triggers for displaced compressed scenarios

Search for inelastic DM | A. Frankenthal | LLP13

- Theory projections assume 300 fb⁻¹ of integrated luminosity, vs. ~140 fb⁻¹ with Run 2 data
- No cross section enhancement from Z mixing considered in theory projection
- Regions of the relic density phase space are excluded

Signal kinematics

100

- Muons:
 - Displaced
 - Soft
 - Collimated
- MET:
 - Significant
 - Collimated with muons
- ISR jet:
 - Energetic
 - Opposite MET-dimuon system

Generator MC plots

(MG5 2.6.0 LO + Pythia 8)

2.5

 Event selection optimized with N-1 cuts using signal significance as metric (some examples in backup)

Signal extraction and background prediction

- Backgrounds have poor(er) MC modeling, so predict from data itself
- Modified "ABCD" procedure to simultaneously fit signal and background yields
 - Useful if potential signal contamination in one or more ABCD bins:

$$\begin{bmatrix} N_A^{\text{obs}} = N_A^{\text{bkg}} + \mu \times N_A^{\text{sig}} \\ N_B^{\text{obs}} = N_A^{\text{bkg}} \times c_1 + \mu \times N_B^{\text{sig}} \\ N_C^{\text{obs}} = N_A^{\text{bkg}} \times c_2 + \mu \times N_C^{\text{sig}} \\ N_D^{\text{obs}} = N_A^{\text{bkg}} \times c_1 \times c_2 + \mu \times N_D^{\text{sig}} \end{bmatrix}$$

Fit all three match categories together

- Validation of background prediction in signal-free multijet validation region
 - Require orthogonal cut: number of jets > 2
 - Good closure between prediction and observation in "signal-enriched" bin

- \diamond Limits vs. m_1 for various lifetimes
- \diamond Cross section enhancement clearly visible at $m_1 = 30$ GeV
- Lower sensitivity to the 40% mass splitting scenario
- Higher experimental sensitivity to larger masses (more energetic muons)

