

Search for long-lived HNLs using a displaced jet tagger

Haifa Sfar on behalf of the CMS Collaboration

LLP13 workshop

19-06-2023

Introduction - Heavy neutral leptons (HNLs)

- ◆ New CMS results, Moriond EWK 2023 <u>http://cds.cern.ch/record/2852843</u>.
- ◆ Search for three right-handed neutrinos as a minimal extension to the SM.
- ★ Mass and coupling to the SM neutrinos (m_N , $V_{\ell N}$ i.e. $\ell = e, \mu, \tau$) are free parameters
- Can have Dirac(Majorana) nature process with LNC(LNC +LNV) respectively.
- ✦ Inclusive coupling to the three lepton generation i.e. LFC and LFV.
- ✦ Can be short or longlived:

$$\Gamma_N \propto G_F^2 m_N^5 \sum_{e,\mu,\tau} |V_{\ell N}|^2$$
 and the proper lifetime $\tau \propto \frac{1}{\Gamma_N}$

For fixed mass: The weaker the coupling the longer the lifetime is.

The big picture: Analysis strategy

- + HNL events with $\ell \ell + j^*$ final state, highest branching ratio $B(N \to \ell^{\pm} q \bar{q'}) \approx 52 \%$.
- ✦ A broad categorization to probe different HNL scenarios.
- Displaced jet tagger based on deep neural network techniques developed primarily in EXO-19-011.
- Background estimation using the ABCD method: Two discriminant variables: $m_{\ell_1 \ell_2 j^*}$ and tagger score.
- ◆ Determine limits in m_N , $|V_{\ell N}|^2$ plane

Event selections

CMS

♦Leading lepton (e or μ): Tight lepton: $p_T > 26 - 34$ GeV, $|η| < 2.4 \rightarrow$ Tight isolation

◆Subleading lepton (e or μ): Loose lepton: $p_T > 3 - 5$ GeV, $|\eta| < 2.4 \rightarrow$ No isolation

♦HNL jet candidate j^* : Ak4CHS jet - the closest to ℓ_2 in ΔR .

- Boosted ($\Delta R(\ell_2, j^{\star}) < 0.4$): $p_T > 30$ GeV, $|\eta| < 2.4$
- Resolved (0.4 < $\Delta R(\ell_2, j^{\star})$ < 1.3): $p_T > 20$ GeV, $|\eta| < 2.4$

♦ dilepton mass: $m_{\ell_1,\ell_2} \in [20,80]$ GeV and missing momentum $p_T^{miss} < 60$ GeV

Analysis categorization

4 categories \times 2

The di-lepton flavor and charge

LFC and LFV, i.e. SF and OF : $\mu\mu$, ee, μe , $e\mu$

LNC and LNV, i.e., OS and SS

2 categories

The topology of the HNL decay product

Boosted : $\Delta R(\ell_2, j^*) < 0.4$

Resolved: $0.4 < \Delta R(\ell_2, j^*) < 1.3$

3 categories

The 2D displacement: $d_{xy}^{sig}(\ell_2) = d_{xy}(\ell_2)/d_{xy}^{err}(\ell_2)$

Prompt $d_{xy}^{sig} < 3$

Medium $3 < d_{xy}^{sig} < 10$

Displaced $d_{xy}^{sig} > 10$

Combined Flavor categories

Displaced jet tagger

- ✦ Extension of this work
- ✦ Outputs to cover jets with leptons inside.
 - ✓ Prompt leptons & photon, uds, g, c, b, pileup,
 - ✓ Displaced HNL jets(w/ and w/o leptons).
- \blacklozenge Parametrization of the tagger using the generator level displacement L_{xv}
- ✦ Domain adaptation: Train tagger on data in the control region.

 \rightarrow to improve data/MC agreement

Displaced jet tagger : Signal Region

- ◆ Tagger output distribution: simulation scaled to Xsec × Lumi
- Pre-fit distributions Good agreement in general
- ♦ All signal region cuts applied except the m_{ℓ_1,ℓ_2,j^*}

Data

W+jets

Z/γ*+jets

Vγ*+jets

Multijet

0.8

 $P_l(j^*)$

📒 tī / t

Boosted OS

Boosted SS

CMS

10⁶

10'

10

10

1.5

0.5

Ω

10

SR, SS leptons, boosted j*

- - Majorana HNL (×10²)

 $m_N = 10 \text{ GeV}, c\tau_0 = 1 \text{ mm}$

0.2

0.4

(ee, eµ, µe, µµ) + jets, 138 fb⁻¹ (13 TeV)

0.6

Resolved OS

Resolved SS

Displaced jet tagger control region

CMS

◆DY+jets control region: high dilepton mass for inclusive leptons categories and combined OS + SS
◆Pre-fit distribution: good modeling in general (simulation scaled to Xsec × Lumi)

Background estimation strategy

◆Expected (Post-fit) and observed (unblinded) yields in 48 categories overlaid with two signal scenarios.

✦The thresholds of the tagger are optimized per category.

◆No significant deviation from the expected background is observed.

★Results using full Run 2 data for different couplings scenarios to the three leptons generation ★Best observed limits for pure muon coupling scenario $\rightarrow |V_{\mu N}|^2 > 5(4) \times 10^{-7}$ for Dirac(Majorana)

DIRAC HNL scenario

★Results using full Run 2 data for different couplings scenarios to the three leptons generation ★Best observed limits for pure muon coupling scenario $\rightarrow |V_{\mu N}|^2 > 5(4) \times 10^{-7}$ for Dirac(Majorana)

Majorana HNL scenario

★Results using full Run 2 data for different couplings scenarios to the three leptons generation ★Best observed limits for pure muon coupling scenario $\rightarrow |V_{\mu N}|^2 > 5(4) \times 10^{-7}$ for Dirac(Majorana)

DIRAC HNL scenario

★Results using full Run 2 data for different couplings scenarios to the three leptons generation ★Best observed limits for pure muon coupling scenario $\rightarrow |V_{\mu N}|^2 > 5(4) \times 10^{-7}$ for Dirac(Majorana)

Majorana HNL scenario

Exclusion limits: Fixed HNL lifetime

CMS

◆Exclusion limits as a function of the relative coupling to the three lepton generation ◆For fixed $c\tau_0$, scan over possible couplings → Find the maximum excluded m_N .

Exclusion limits : Fixed HNL mass

◆Exclusion limits as a function of the relative coupling to the three lepton generation ◆For fixed m_N , scan over possible couplings → Find the maximum excluded $c\tau_0$.

Impact

CMS

✦ Most significant Impacts on the results

Uncertainty source	Process	Uncertainty Size %	
		10	
Stat. unc. From the sideband region	Background	7	
Loose muon reco	Signal		
Displaced jet tagger	Signal	0	
Jet energy scale and resolution	Signal	2	

Summary

Data

📒 tī / t

0.8

138 fb⁻¹ (13 TeV)

fe

 $P_l(j^*)$

Ч

W+jets

Z/γ*+jets Vy *+jets

✦First Analysis in CMS to probe HNL coupling to the three lepton

generation simultaneously.

- ✦Broad categorization to probe both Dirac and Majorana.
- ✦Displaced jet tagger to be sensitive over a broad range of lifetimes.
- ✦Background estimated from data.
- ♦No excess was observed
- ✦Setting limits on the mass and coupling plane
 - \rightarrow Best limits observed for muon and electron pure couplings.
- ◆Limits determined in relative coupling space (triangle plots.)