Search for long-lived SUSY with disappearing tracks

Searching for long-lived particles at the LHC and beyond: Thirteenth workshop of the LLP Community July 19 2023

<u>Viktor Kutzner</u>¹, Sam Bein¹, Bill Gary³, Seh Wook Lee², Sang-il Pak², Peter Schleper¹, Sezen Sekmen² ¹) Hamburg University, ²) Kyungpook University, ³) UC Riverside

Search for long-lived SUSY with disappearing tracks

- new analysis first publicly presented at LHCP 2023
- published Physics Analysis Summary: CMS-PAS-SUS-21-006 [link]
- chargino mixing: $\tilde{W}^{\pm}, \tilde{H}^{\pm} \rightarrow \tilde{\chi}_{1,2,3,4}^{\pm}$
- models with little mixing have <u>compressed mass spectra</u>
 - e.g., for pure Higgsino/pure wino LSP models
 - $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \sim 300 \text{ MeV}$
 - $c\tau(\tilde{\chi}_1^{\pm})$ up to 10 cm
 - chargino produced at the pp vertex
 - typical decay:
 - pion is very soft in lab frame, $\tilde{\chi}_1^+$ leaves track and "disappears"

Search for long-lived SUSY with disappearing tracks, LLP13 workshop 2023

LHCP 2023 Belgrade

- many possible production, decay modes: $\tilde{g}\tilde{g}, \tilde{t}\bar{t}, b\bar{b}, \tilde{q}\bar{\bar{q}}, \tilde{\chi}\tilde{\chi}$ $\tilde{q} \to b\bar{t}\tilde{\chi}^+, \tilde{q} \to q\bar{q}\tilde{\chi}^+, \tilde{t} \to b\tilde{\chi}^+, \tilde{b} \to t\tilde{\chi}^-$
- simplified models:

Viktor Kutzner (Hamburg University)

 π^{\pm}

CMS disappearing tracks

results are complementary to previous CMS results, such as EXO-19-010 (arxiv:2004.05153) and SUS-19-005 (arxiv:1909.03460)

Search for long-lived SUSY with disappearing tracks, LLP13 workshop 2023

Background estimation

Fake track background

*cut inverted for validation control region

****Phase-1 conditions**

Real-particle background

*cut inverted for fake track control region

Track pre-selection

- <u>short tracks</u>: pixel-only tracks
- long tracks: pixel+strips

Search for long-lived SUSY with disappearing tracks, LLP13 workshop 2023

track kinematics:

• $p_T > 25$ (>40) GeV for short (long) tracks

• $\eta < 2.0$ - fiducial tracker volume

track properties:

high quality track, no missing inner hits

• long tracks: ≥ 2 missing outer hits

• short tracks: \geq 3 valid pixel hits, 0 strips hits

• η - ϕ mask (post-selection, derived with loose BDT cut)

reduce fake tracks:

• $d_{xy}(PV), d_z(PV) < 0.1 \text{ cm}$

isolation:

• relative track isolation < 0.2

• veto if $\Delta R(\text{track}, PF \text{ candidate}) < 0.01 \text{ or } \Delta R(\text{track}, \text{jet}) < 0.4$

calometric deposited energy:

• $E_{dep} < 15 \text{ GeV}$ (short tracks)

• $E_{dep}/p < 20\%$ (long tracks)

Disappearing track selection using MVA classifier

- trained boosted decision trees with TMVA
 - background training samples: SM Monte Carlo tracks (unweighted)
 - signal training sample: pooled T5btbtLL MC tracks (unweighted)
- BDT input variables, sorted by importance:
 - short tracks: Iong tracks: 1. d_{xy} (track, PV) 1. d_{xy} (track, PV) 2. d_z (track, PV) 2. strips hits 3. relative track isolation 3. d_z (track, PV) 4. $\chi^2/ndof$ 4. $\Delta p_T/p_T^2$ 5. pixel hits 5. $\Delta p_T/p_T^2$ 6. relative track isolation 6. pixel hits
 - 7. χ^2 /ndof
 - 8. missing outer hits

Search for long-lived SUSY with disappearing tracks, LLP13 workshop 2023

moderate gain in signal eff. with reduced background rate w.r.t. other CMS searches

Data-driven background estimation

- <u>real-particle</u> background from particles that fail the reconstruction
 - showering background due to e.g. electrons due to Bremsstrahlung
 - muon background measured separately
- combinatoric background from <u>fake tracks</u> due to \bullet random alignment of detector hits (by chance or due to detector noise)

Search for long-lived SUSY with disappearing tracks, LLP13 workshop 2023

- predicted number of SR events: $D = C \cdot B / A$
- measure transfer factor
 - for real-particle bg. in DY-enriched e/μ + DTk region $m_{I,DTk} = [65, 110] \text{ GeV}, m_T < 100 \text{ GeV}$
 - for combinatoric bg. in zero-lepton QCD region: hard $p_{\rm T}^{\rm miss} = [30, 60] \, {\rm GeV}$
- define sidebands
 - for real-particle bg.: use sideband region with large (background-like) E_{Dep}
 - for combinatoric bg.: use sideband region

Systematic uncertainties

Source	rel. uncertainty (%)			
DTk selection efficiency	10-17			
Integrated luminosity	1.6			
Jet energy scale and resolution	0-24			
b-jet tagging	0-4			
Renormalization and factorization scales	0-2			
Initial-state radiation	0-3			
Pileup modeling	0-2			
Trigger efficiency	0-4			
dE/dx calibration	3-8			
Showering long tracks	20-28			
Showering short tracks	24-104			
Muon long tracks	25-38			
Fake long tracks	5-52			
Fake short tracks	6-28			

Search for long-lived SUSY with disappearing tracks, LLP13 workshop 2023

- derive **DTK scale factors** by using a novel method to artifically shorten muon tracks and re-running the track reconstruction
- use shortened muons as a proxy for the chargino:
 - 1. select isolated muons with $p_T > 25$ (40) GeV for short (long) tracks
 - 2. identify best muon track with ≥ 10 layers with measurement
 - 3. artificially shorten tracks by removing hit clusters
 - 4. re-run complete reconstruction step for each N remaining layers
 - 5. evaluate track tag on shortened tracks

developed by A. Tews [link]

Results

Search for long-lived SUSY with disappearing tracks, LLP13 workshop 2023

covered by uncertainties, thus mitigated in likelihood fit

25

30

35

40

Interpretation: $pp \to \tilde{b}\tilde{b}, \tilde{b} \to t\tilde{\chi}_1^{\pm}$

limit reaches up to $m_{\tilde{b}} \leq 1.5 \text{ TeV} / m_{\tilde{\chi}_1^0} \leq 1.1 \text{ TeV}$ ($c\tau = 200 \text{ cm}$):

Search for long-lived SUSY with disappearing tracks, LLP13 workshop 2023

Viktor Kutzner (Hamburg University)

Interpretation: $pp \to \tilde{t}\tilde{t}, \tilde{t} \to b\tilde{\chi}_1^{\pm}$

limit reaches up to $m_{\tilde{t}} \leq 1.6 \text{ TeV} / m_{\tilde{\chi}_1^0} \leq 1.4 \text{ TeV}$ ($c\tau = 200 \text{ cm}$):

Search for long-lived SUSY with disappearing tracks, LLP13 workshop 2023

Interpretation: $pp \to \tilde{g}\tilde{g}, \tilde{g} \to bt\tilde{\chi}_1^{\pm}$

limit reaches up to $m_{\tilde{g}} \leq 2.3$ TeV / $m_{\tilde{\chi}_1^0} \leq 2.0$ TeV ($c\tau = 200$ cm):

Search for long-lived SUSY with disappearing tracks, LLP13 workshop 2023

Viktor Kutzner (Hamburg University)

Interpretation: higgsino model

Search for long-lived SUSY with disappearing tracks, LLP13 workshop 2023

Model name	Description	Decays
T2btLL	Top squark-associated $\widetilde{\chi}_1^\pm$ production	$\widetilde{\mathfrak{t}} ightarrow \mathfrak{t} \widetilde{\chi}_1^0, \widetilde{\mathfrak{t}} ightarrow \mathfrak{b} \widetilde{\chi}_1^\pm$
T2tbLL	Bottom squark-associated $\widetilde{\chi}_1^{\pm}$ production	$\widetilde{\mathrm{b}} ightarrow \mathrm{b} \dot{\widetilde{\chi}}_1^0, \widetilde{\mathrm{b}} ightarrow \mathrm{t} \dot{\widetilde{\chi}}_1^\pm$
T5btbtLL	Gluino-associated $\widetilde{\chi}_1^{\pm}$ production	$\widetilde{g} ightarrow b\overline{b}\hat{\widetilde{\chi}}_{1}^{0}, t\overline{t}\widetilde{\widetilde{\chi}}_{1}^{0}, t\overline{b}\widetilde{\widetilde{\chi}}_{1}^{-}, \overline{t}b$
TChiWZ TChiWW TChiZ	Models with a nearly pure higgsino LSP	$\begin{split} \widetilde{\chi}_{2}^{0} & ightarrow Z \widetilde{\chi}_{1}^{0}, \widetilde{\chi}_{1}^{\pm} ightarrow \widetilde{\chi}_{1}^{0} \pi^{\pm} \ \widetilde{\chi}_{1}^{\pm} ightarrow \widetilde{\chi}_{1}^{0} \pi^{\pm}, \widetilde{\chi}_{1}^{\mp} ightarrow \widetilde{\chi}_{1}^{0} \pi^{\mp} \ \widetilde{\chi}_{1}^{\pm} ightarrow \widetilde{\chi}_{1}^{0} \pi^{*}, \widetilde{\chi}_{1}^{0} \end{split}$

- higgsino model: MSSM DM candidate with direct EWKino production
 - see Nagata, Shirai <u>arXiv:1410.4549v2</u>; Fukuda, Shirai et al. <u>arXiv:1910.08065</u>
- $\Delta m^{\pm} = \Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0)$
- cross sections σ : fully-degenerate higgsino production
- green: minimum Δm^{\pm} allowed by radiative corrections assuming pure Higgsino model points

ADL & reinterpretation

- ADL: Analysis Description Language
 - declarative domain specific language for describing physics algorithms
 - decoupled from analysis software frameworks
 - esp. useful for analysis design, use and preservation
- we are working to provide the full information in ADL format soon
 - available for public use
 - provide ADLs for actual CMS data tiers (AOD/TreeMaker) and Delphes
 - allows analysis to be fully preserved
- reinterpretation
 - intending to provide DTk tagging efficiencies vs. transverse decay length • checking dependence on p_T and different signal models

 - other suggestions?

Search for long-lived SUSY with disappearing tracks, LLP13 workshop 2023

<u>cern.ch/adl</u>

OBJECTS
<pre># Leptons object electrons take electron select pt > 40 select abs(eta) < 2.4 select passIso == 1 select tightID == 1</pre>
object muons take muon select pt > 40 select abs(eta) < 2.4 select passIso == 1 select mediumID == 1
•••

ADL documented in <u>arxiv:1605.02684</u>, arxiv:2203.09886, arxiv:2101.09031

Viktor Kutzner (Hamburg University)

Search for long-lived SUSY with disappearing tracks

- search for long-lived SUSY with disappearing tracks
 - targeting pure wino / higgsino dark matter
- first analysis with
 - e/μ + disappearing track(s) in final states
 - BDT in disappearing track tag
 - usage of dE/dx in disappearing track SR binning
- no clear indication of a positive signal
- we will provide the full information in ADL format soon for full preservation of analysis
- for reinterpretation purposes, we intend to provide disappearing track tagging efficiencies vs. transverse decay length

Thank you for your attention!

Search for long-lived SUSY with disappearing tracks, LLP13 workshop 2023

Í	10	tion [pb]
	10	cross sec
-	10	ber limit on
	10	5% C.L. upp
20	10	₅ ठॅ

Backup

Event selection

Search for long-lived SUSY with disappearing tracks, LLP13 workshop 2023

ic channel ($N_{\rm DTk} = 1, N_{\mu} = 0, N_{\rm e} = 0$)					Muon channel ($N_{\text{DTk}} = 1, N_{\mu} \ge 1, N_{\text{e}} = 0$)								
;	$N_{ m b-jet}$	$N_{\rm jet}$	N_{short}	N _{long}	dE/dx	SR	hard $p_{\rm T}^{\rm miss}$ range	$N_{ m b-jet}$	$N_{ m jet}$	N_{short}	N _{long}	dE/dx	SR
			0	1	L	1	30-100 CeV			0	1	L	25
		[1,3)	0		Н	2		0 ≥1				Н	26
			1	0	L	3				1	0	L	27
	0				Н	4						Η	28
	0		0	1	L	5	50 100 Gev			0	1	L	29
		>3	0	I	Н	6			>1	U	1	Η	30
		≥ 3	1	0	L	7				1	0	L	31
			T	0	Н	8				Å	U	Н	32
			0	1	L	9	>300 GeV	Any		0	1	L	33
		[1 2)	0		Н	10						H	34
		[1,3)	1	0	L	11				1	0	L	35
	≥1 –				Н	12						Η	36
		≥3	0	1	L	13	Electron channel ($N_{\text{DTk}} = 1, N_{\text{e}} \ge 1$)						
					Н	14		0 ≥ 1 ≥ 1		0	1	L	37
			1	0	L	15						Η	38
			T	0	Н	16			≥1	1 0	0	L	39
			0	1	L	17	30–300 GeV				U	Н	40
		[1 2)			Н	18					1	L	41
		[1,3)	1	0	L	19						H	42
Any	Any				Н	20				1	0	L	43
	Any		0	0 1	L	21						Н	44
		>2	0		Н	22		Any		0	1	L	45
		≥ 3	1	0	L	23	>300 GeV					H	46
					Н	24						L	47
										-	Ť	Η	48
				$N_{\rm DTk} \ge 2$ channel									
2	v in.					$>30 \text{GeV}$ Any ≥ 1 Any 4				49			

• low (L) dE/dx < 4.0 MeV/cm

• high (H) $dE/dx \ge 4.0 \text{ MeV/cm}$

Viktor Kutzner (Hamburg University)

Track selection in signal and control regions

list of cuts defining tracks in signal and various control regions:

Phase/category	Phase 0/short	Phase 0/long	Phase 1/short	Phase 1/long
BDT for SR samples	>0.1	>0.12	>0.15	>0.08
<i>E</i> _{dep} for SR samples [GeV]	< 15 GeV	<0.2 <i>p</i>	< 15 GeV	<0.2 <i>p</i>
E _{dep} for CR ^{real} samples [GeV]	[30, 300] GeV	[0.3, 1.2] <i>p</i>	[30, 300] GeV	[0.3, 1.2] <i>p</i>
BDT for CR ^{real} samples	>0.1	>0.05	>0.05	>0.08
BDT for CR ^{fake} samples	[-0.1, -0.05]	[-0.1, 0.0]	[-0.1, 0.05]	[-0.1, 0.0]

Search for long-lived SUSY with disappearing tracks, LLP13 workshop 2023

Viktor Kutzner (Hamburg University)

Phase 1 pixel detector upgrade

Phase 0 Phase 1

Search for long-lived SUSY with disappearing tracks, LLP13 workshop 2023

Phase 1

Phase 0

Viktor Kutzner (Hamburg University)

