

FLArE: Forward Liquid Argon Experiment Matteo Vicenzi (Brookhaven National Laboratory)

mvicenzi@bnl.gov

on behalf of the FLArE technical group https://indico.cern.ch/category/15544/

LLP13 Workshop - June 21st, 2023

- mesons, and neutrinos of all flavors) in the forward direction.
 - But also *LLPs*: dark photons, millicharged particles, light dark matter, etc.
- (for τ neutrinos) and <u>low threshold</u> (for DM scattering)

→ a liquid argon TPC: **FLArE**

• Forward Physics Facility: Large flux of high energy (>100 GeV) light particles (pions, kaons, D-

Unique opportunity for a detector with good energy containment (high density), high spatial resolution

Physics: Neutrinos and SM

- FPF bridges the gap between accelerator and atmospheric data.
- Fluxes have very high uncertainties both an opportunity (measure them!) and a challenge (large systematics!)
- FLArE is an excellent option for a broad purpose neutrino detector.

Evts/ton/fb ⁻¹	ν	$ar{ u}$	TOT
e	2.1	1.0	3.1
mu	15	5	20
tau	0.1	0.05	0.15

At HL-LHC, 1 fb⁻¹ approximately per day!

 Tau and high energy electron fluxes from charm production in the pp collision — handle on <u>QCD models</u>!

https://doi.org/10.1088/1361-6471/ac865e

Physics: Dark Matter

- Direct DM detection from <u>nuclear</u> or <u>electron</u> scattering.
- Signal is at low energy (~1 GeV). Need high kinematic resolution. LAr TPCs can go as low as from ~10-20 MeV for thresholds.
- Dominant background is neutrino (elastic) scattering and muons coming from IP.
 - Requires veto of passing-through muons (scintillators) or volume fiducialization.
 - Mitigated by kinematic cuts (low momentum transfers)
- Target sensitivity indicated by relic density can be achieved with **10 tons of LAr**

https://doi.org/10.1103/PhysRevD.103.075023

Background rates

x=0 is the ATLAS axis. Crossing angle in the horizontal plane is included.

- Fluence in x/z plane in FPF location from CERN FLUKA team (20 cm from LOS in vertical plane).
 - Clear hotspots at ~2m from LOS in horizontal.
- Possible issue for all detectors, looking into a sweeper magnet.
- Muon flux: lacksquare
 - 0.6 Hz/cm² at 5*10³⁴/cm²/sec (0.15 mu+, 0.45 mu-).
 - ~ 6 tracks/ms per m² of detector
- Neutron flux ~0.1 Hz/cm² is mostly at low energies.

Technical requirements

- Dark matter detection:
 - Fiducial mass of 10 tons is needed for good statistics and sensitivity at ~600 m.
 - Low (~100 MeV) threshold for dark matter elastic scattering (need to catch isolated recoiling electrons).
- Neutrino physics:
 - Good event/energy containment (high density) and resolution (~10 interaction lengths, live detector).
 - Muon and electron ID, and a hadron/muon magnetized calorimeter.
 - Tau neutrino detection requires <1 mm scale spatial resolution. Only emulsion is guaranteed for this scale, but it cannot be triggered. The next best thing is a liquid argon TPC.
- Key technical issues for FLArE:
 - Muon background (space charge and pile up limitations) from the high luminosity running of LHC
 - Triggering on contained events/reject muons → Excellent photon sensors (SiPM) and DAQ
 - Spatial resolution \rightarrow Pixel anodes.
 - Heat load on the cryogenic system \rightarrow dominated by electronics.

Cryostat options

	Cryostat Inner Dimensions	Insulation Type	Insulation Thickness	Insulation density
MicroBooNE	3.8m dia x 12 m	Polyurethane Foam	400mm	32 kg/m ³
ICARUS-GS	3.9m x 3.6m x 19.6m	Nomex honeycomb+pe rforated Al	665 mm+ (combined)	25-35 kg/m
ICARUS- SBN	3.9m x 3.6m x 19.6m	AI extrusion+GTT foam	665 mm+ (combined)	25-35 kg/m
ProtoDUNE	7.9m x 8.55m x 8.55 m	GTT membranc	800mm	90 kg/m³
ND-LAr	3m x 5m x7m	GTT membrance	800mm	90 kg/m³
FLArE	~(1m x 1m x 7m)			

- Space in FPF hall currently is limited to 3.5 m X 3.5 m X 9.6 m for FLArE.
- 80 cm GTT membrane occupies 1.6 m out of 3.5 m. More space might be needed for
- design of FLArE cryostat and detector installation.

corrugations, but DUNE ND-LAR design has installation from top, which simplify things.

BNL recently contracted an engineering firm (Bartoszek Engineering) for conceptual

Modular TPC

- FLArE is a modular LAr TPC: segmentation for light collection (trigger) and reducing space charge intensity from muon rate with small drift gap (30cm).
- Taking full advantage of recent R&Ds in LAr technologies!

Inspired by the DUNE near detector concept

https://doi.org/10.3390/instruments5040031

Lawrence Berkeley National Laboratory University of Bern

Each module is a "mini" TPC, with a cathode plane in the middle

- wire anodes in non-fiducial region. Fiducial mass is 10 tons, total active mass is ~30 tons.
- Magnetized hadron/muon calorimeter downstream.

• Conceptual Design is 3 x 7 vertical TPC modules with 0.3 m gap. Each module is then 0.6 m X 1.8 m X 1 m. Orientation of drift is completely open for discussion to get < 1 mm space point resolution.

Simulations show reasonable containment of neutrino events in LAr and total energy measurement.

• Pixel-based anode \rightarrow very high number of channels. Reduce channel count by using strip-based or

Charge readout

- Anode pixel readout is important to achieve <1 mm resolution.
- LArPix vs Q-Pix
- Pitch size strongly affects the number of readout channels and the heat load!

https://doi.org/10.1016/j.nima.2017.04.030

- Idea: achieve resolutions smaller than pixel size by using signals induced in neighboring pixels.
- E.g: resolution down to 250 μm for a 1.7 x
 1.7 mm² pixel

Nominal configuration

- Photodetectors needed for triggering e.g. ARAPUCA (photon is trapped through wavelength shifting and dichroic short-pass filters; readout by one or more internal SiPMs).
- Timing could associate events with the ATLAS bunch crossing (studies are needed).
- Magnet concept for hadronic calorimeter & muon tagger under study.

	Value	Remarks
LAr detector fiducial mass	>10 tons	
Active dimensions	$1.8 \text{ m} \times 1.8 \text{ m} \times 7 \text{ m}$	not including cryostat
Cryostat dimensions	$3.5 \text{ m} \times 3.5 \text{ m} \times 9.6 \text{ m}$	membrane type
TPC modules/drift length	$3 \times 7 \text{ (gap: ~30 cm)}$	short gap TPC
TPC height	1.8 m	
Spatial resolution	<1 mm	in drift and tranverse dimension
Charge readout	pixels	pixel/wire hybrid approach possible
Trigger and light readout	SiPMs/WLS-plates	needed for neutrino trigger and time
Background muon rate	$\sim 1/\mathrm{cm}^2/\mathrm{s}$	at luminosity $5 \times 10^{34} / \text{cm}^2 / \text{s}$
Neutrino event rate	$\sim 50/\text{ton/fb}^{-1}$	for all flavors of neutrinos
Hadronic calorimeter (hadmu)	$\sim 6 - 10\lambda$	interactions lengths
Dimensions	$1.8 \text{ m} \times 1.8 \text{ m} \times 1.05 \text{ m} \text{ (depth)}$	Fe/scint sandwich
Muon tagger and momentum	1 Tesla magnetized Fe/scint	same as the hadmu

Summary

- FLArE is a modular liquid argon detector for neutrino and dark matter physics being considered for the Forward Physics Facility (FPF) at CERN.
- Preliminary examination of event rates and backgrounds suggests that a LAr detector is feasible and ground-breaking.
- It offers particle ID and reconstruction of track angle and kinetic energy over a large dynamic range, from ~ 10 MeV to many hundreds of GeV, complementary to detectors tuned for specific searches.
 - Interest toward a uniform measure of sensitivity for all proposed experiments in the FPF (ensuring recasting & reinterpretations) but discussions not yet developed.
- Design choices will require further R&D: TPC charge readout electronics must be optimized for high spatial resolution and the trigger design will require detailed simulations and software development.
- Goal is drafting a conceptual design document in 2024.

Backup

FLArE @ Forward Physics Facility

for BSM searches

Physics: Neutrino fluxes

Diffusion

Electron transverse diffusion coefficient: $D_t = 13 \text{ cm}^2/\text{s}$ Electron longitude diffusion coefficient: $D_l = 5 \text{ cm}^2/\text{s}$

> t = 500 [mm] / 2.0 [mm/us] = 250 usT = 250 [mm] / 2.5 [mm/us] = 100 us 1D case $\sigma_l = \sqrt{2D_l t} = 0.5$ [mm] 2D case $\sigma_t = \sqrt{4D_t t} = 1.1$ [mm]

	500 mm at 1 KV/cm, 250 us	250 mm at 2 KV/cm, 100 us
σ_l (FWHM)	0.5 (1.2) mm	0.3 (0.7) mm
σ_t (FFHM)	1.1 (2.6) mm	0.7 (1.7) mm

There should be no fundamental limit to getting < 1 mm resolution

Tentative timeline

continues to the end of the HL-LHC era (~2031-42).

Begin CE works, installation of services in LS3, followed by installation and commissioning of experiments in early Run 4. Physics begins in Run 4 and