# **BSM Searches with FASER**

J. Anders

LLP2023





- FASER is a forward LHC experiment designed to detect light and weakly interacting particles
  - Situated 480m downstream of the ATLAS IP
  - Utilises the large LHC collision rate (and increased light particle production rate in the forward region) to:
    - Search for long-lived BSM particles such as Dark Photons (A')
    - Measure collider-produced neutrinos



- Further FASER related talks:
  - <u>Tomohiro: FASER Neutrino results</u>, <u>Jamie: Forward Physics Facility</u>

# The FASER Detector

(arxiv:2207.11427)<sup>3</sup>

- A (relatively) small detector composed of:
  - An emulsion based neutrino detector (FASERv)
  - Multiple scintillator systems (used for either triggering, timing, or vetoing)
  - A calorimeter system (LHCb outer Calo modules)
  - 4 tracking stations (IFT and 3 spectrometer stations composed of 3x3 layers of ATLAS SCT strip modules with 0.5 B-field applied)
  - 1 decay volume (1.5m) with 0.5T B-field applied



# FASER 2022 Operations

- Installed and successfully commissioned during 2021/22
  - More than 350M single-muon events recorded
  - All detector components working as expected
- Recorded 37fb<sup>-1</sup> of data
  - Generally automated, continuous data-taking
  - Trigger rate of up to 1.3kHz
  - Dead-time of 1.3%
- Dark Photon analysis luminosity: 27fb<sup>-1</sup>
  - Lower luminosity used than the full dataset as only events where the optical fibres were installed
  - Allowing for a calorimeter gain optimised up to 3 TeV



#### **Dark Photon Search - Theoretical Motivation**

- Dark photons (A') are predicted in many hidden sector models
  - Weakly coupled to the SM via kinetic mixing ( $\epsilon$ ) to the SM photon

$$\mathcal{L} \supset rac{1}{2} m_{A'}^2 A'^2 - \epsilon \, e \sum_f q_f A'_\mu \, ar{f} \gamma^\mu f \; ,$$

• At the LHC, low mass A' will mainly be produced in the decays of light mesons (eg: the pion), with a branching ratio:

$$B(\pi^0 \to A'\gamma) = 2\epsilon^2 (1 - m_{A'}^2 / m_{\pi^0}^2)^3 B(\pi^0 \to \gamma\gamma)$$

• As the lifetime is dependent upon the kinetic mixing, FASER targets long decay lengths, (therefore weak mixing) due to the distance of the detector from the IP

$$L = c\beta\tau\gamma \approx (80 \text{ m}) \left[\frac{10^{-5}}{\epsilon}\right]^2 \left[\frac{E_{A'}}{\text{TeV}}\right] \left[\frac{100 \text{ MeV}}{m_{A'}}\right]^2$$

- Provided m(A') < 2m(μ), the dark photon decay will always decay to an e<sup>+</sup>e<sup>-</sup> pair
  - Dark photon signal simulated using FORESEE
  - Generated π<sup>0</sup> & η using EPOS-LHC
    - Subdominant contributions from "dark"-bremstrahlung
  - Systematic uncertainties on the signal generation are considered (and are found to be the dominant uncertainty)
    - A parameterised (based on E(A')) difference between the nominal and QGSJET/SIBYLL is applied
  - All generators are tuned on LHCf forward pion data, and these generators bracket the LHCf data
- For the phase space that FASER is sensitive to, high electron energies are expected, hence a relatively high calorimeter energy requirements



- For the first result a simple analysis strategy is implemented
  - A blind analysis is performed, with a blinding criteria of no-veto signal in the veto scintillator and Ecalo > 100GeV
- Robust selection:
  - Collision event passing FASER data-quality requirements
  - No signal (< 40pC) in any veto scintilator
  - Exactly two good tracks:
    - p > 20GeV
    - r < 95mm (tracks are then extrapolated back to the veto stations and are also required to be within r <95mm)</li>
  - Timing & preshower scintilators are consistent with 2 MIPs
  - Calo energy deposit of E > 500GeV



- No signal (< 40pC) in any veto scintilator
- Exactly two good tracks:
  - p > 20GeV
  - r < 95mm (tracks are then extrapolated back to the veto stations and are also required to be within r <95mm)</li>
- Timing & preshower scintilators are consistent with 2 MIPs
- Calo energy deposit of E > 500GeV



- No signal (< 40pC) in any veto scintilator
- Exactly two good tracks:
  - p > 20GeV
  - r < 95mm (tracks are then extrapolated back to the veto stations and are also required to be within r <95mm)</li>
- Timing & preshower scintilators are consistent with 2 MIPs
- Calo energy deposit of E > 500GeV



- No signal (< 40pC) in any veto scintilator
- Exactly two good tracks:
  - p > 20GeV
  - r < 95mm (tracks are then extrapolated back to the veto stations and are also required to be within r <95mm)</li>
- Timing & preshower scintilators are consistent with 2 MIPs
- Calo energy deposit of E > 500GeV



- No signal (< 40pC) in any veto scintilator
- Exactly two good tracks:
  - p > 20GeV
  - r < 95mm (tracks are then extrapolated back to the veto stations and are also required to be within r <95mm)
- Timing & preshower scintilators are consistent with 2 MIPs
- Calo energy deposit of E > 500GeV



- No signal (< 40pC) in any veto scintilator
- Exactly two good tracks:
  - p > 20GeV
  - r < 95mm (tracks are then extrapolated back to the veto stations and are also required to be within r <95mm)
- Timing & preshower scintilators are consistent with 2 MIPs
- Calo energy deposit of E > 500GeV



- There are 4 potential background sources that are considered:
  - Veto inefficiency
  - Non-collision backgrounds (Cosmics, Beam debris)
  - Neutrino background
  - Neutral Hadron background

- There are 4 potential background sources that are considered:
  - Veto inefficiency
  - Non-collision backgrounds (Cosmics, Beam debris)
  - Neutrino background
  - Neutral Hadron background



- The inefficiency is measured (layer-by-layer in the scintillators) with muons with tracks which point back to the veto layers
- 5-layer veto reduces 10<sup>8</sup> muon sample to a negligible level before applying selections: <u>0 expected events</u>

- There are 4 potential background sources that are considered:
  - Veto inefficiency
  - Non-collision backgrounds (Cosmics, Beam debris)
  - Neutrino background
  - Neutral Hadron background



- Cosmics: measured in runs without beam (left), beam debris measured in non-colliding bunches
  - <u>No events observed</u> with ≥1 track or ECalo > 500 GeV

- There are 4 potential background sources that are considered:
  - Veto inefficiency
  - Non-collision backgrounds (Cosmics, Beam debris)
  - Neutrino background
  - Neutral Hadron background



- The neutrino background is the main background in the analysis
  - Estimated using GENIE simulation (300ab<sup>-1</sup>, with uncertainties from neutrino flux and mismodelling included)
  - <u>1.8 x 10<sup>-3</sup> expected events</u>

- There are 4 potential background sources that are considered:
  - Veto inefficiency
  - Non-collision backgrounds (Cosmics, Beam debris)
  - Neutrino background
  - Neutral Hadron background
- Neutral hadron background arises from upstream muons interacting in the rock in front of FASER
  - Estimated with FLUKA SIM of muons interacting in the final 10m of rock in front of FASER
  - This background is heavily suppressed:
    - The muon generally always continues and passes through FASER (hence is vetoed in the veto scintillator)
    - The hadron must pass through 8 interactions lengths before decaying
    - The decay products must have a high energy
  - From the generated sample, a negligible amount of neutral hadrons pass the full selection, hence an extrapolation is performed using events with 2/3 tracks and differing veto conditions. Expectation =  $2.2 \times 10^{-4}$
- An ABCD method is also used to validate this (with consistent results)

 After considering all backgrounds the total expected number of background events are found to be <u>2.02x10</u><sup>-3</sup>

| Background                                            | Central Value                  | Error (%)                       |
|-------------------------------------------------------|--------------------------------|---------------------------------|
| Background due to veto inefficiency                   | -                              | -                               |
| Background from neutral hadrons or muons missing veto | $0.22 \times 10^{-3}$          | $0.31 \times 10^{-3} \ (141\%)$ |
| Neutrino background                                   | $1.8 \times 10^{-3}$           | $2.4 \times 10^{-3} (133\%)$    |
| Non-collision background                              | -                              | -                               |
| Total                                                 | $2.02 \times \mathbf{10^{-3}}$ | $2.4 	imes 10^{-3}$ (119%)      |

TABLE V. Summary of the different background estimates.

 After the background predictions were finalised, the unblinding was performed, with 0 events found passing the selections (0 events were found passing the ≥ 1 track requirement!)



 After considering all backgrounds the total expected number of background events are found to be <u>2.02x10</u><sup>-3</sup>

| Background                                            | Central Value                  | Error (%)                       |
|-------------------------------------------------------|--------------------------------|---------------------------------|
| Background due to veto inefficiency                   | -                              | -                               |
| Background from neutral hadrons or muons missing veto | $0.22~\times 10^{-3}$          | $0.31 \times 10^{-3} \ (141\%)$ |
| Neutrino background                                   | $1.8 \times 10^{-3}$           | $2.4 \times 10^{-3} (133\%)$    |
| Non-collision background                              | -                              | -                               |
| Total                                                 | $2.02 \times \mathbf{10^{-3}}$ | $2.4 	imes 10^{-3} (119\%)$     |

TABLE V. Summary of the different background estimates.

 After the background predictions were finalised, the unblinding was performed, with 0 events found passing the selections (0 events were found passing the ≥ 1 track requirement!)



#### Dark Photon Search - Results

- From this null result, FASER can place (90% CL) limits in previously unprobed phase space
  - Probing region relevant for thermal relic target & region uncovered by the recent NA62 result (overlay in backup)



## Dark Photon Search - Outlook

- Presented the results of the first BSM search performed by FASER
  - Limits placed in interesting (and uncovered) regions of parameter space with respect to the thermal relic target
- Currently presented results are from our preliminary CONF note, with the final results (including small analysis improvements) to be finished in the next months
  - Will also include an interpretation in a B-L model
  - Final paper documenting this search is expected by the end of July

- We are already planning on the reinterpretation of our results and we plan to implement RECAST (not just for this result but generally for our BSM searches)
  - We will also obviously provide the standard HEPDATA
    - Limit results
    - Acceptance x efficiency
    - Cutflow examples
  - We will also put the result into DarkCast

# FASER - Outlook & Ongoing Work

- We expect x10 more data for the full Run 3 dataset
  - We will search for several other models including ALPs  $\rightarrow$  **XX**
  - 2023 data taking is proceeding well, with 20 fb<sup>-1</sup> of data already collected



 Proposed large upgrade to FASER is being discussed in the context of the <u>Forward Physics Facility</u>

With many thanks to:





## Appendices



#### Appendices

