DAMSA Experiment @ Fermilab PIP-II and Beyond

LLP2023

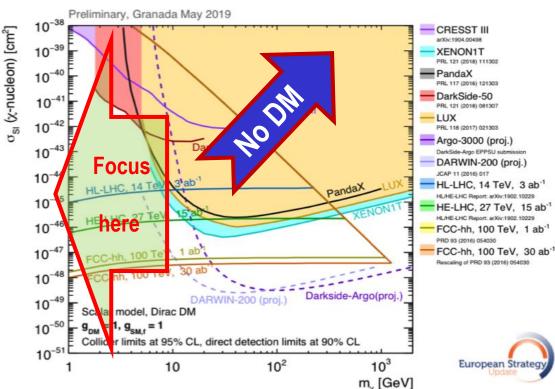
June 19 – 23, 2023

CERN

Jaehoon Yu University of Texas at Arlington

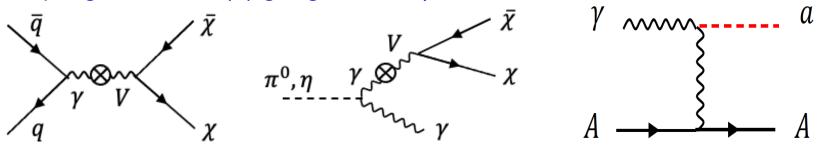
Outline

- Introduction
- •What is DAMSA and are its Requirements?
- •What is in Fermilab PIP-II Era?
- DAMSA Experiment Specifics
- •The Strategy, the Team and the Timeline
- Conclusions

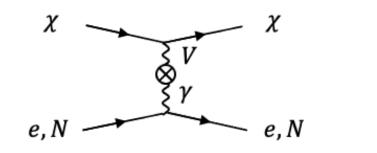

Physics Motivation For DSP

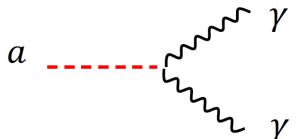
- SM describes the visible ~5% of the matter in the universe → becoming more solidly established, while the neutrinos sector requires modifications
- Dark matter (Dark Sector Particle, DSP) makes up about 25% of the universe → must be explored better
- Direct searches have limitations in kinematic reach, leaving low mass range un-explored
 10⁻³⁸ Preliminary, Granada May 2019

DA


- Strategy:
 - Search for rare particles in unexplored kinematic regime
 - Make and discover
 DSPs in accelerators
 - Establish human infra on DM production

June 22, 2023



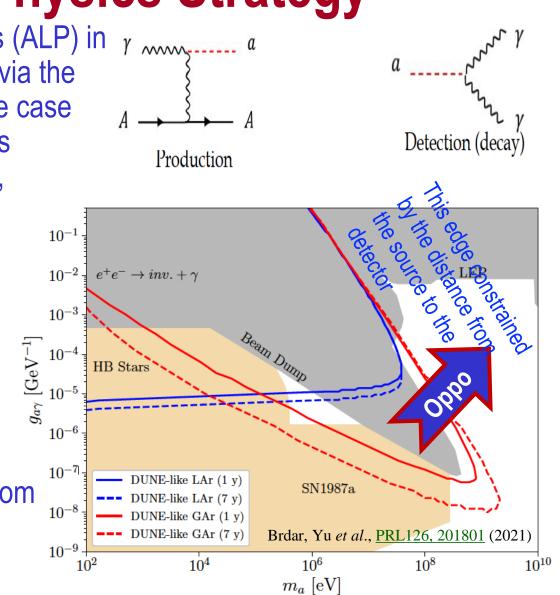

DSP's? How do we make & see them?

- Set of new particles which do not experience the known forces
- DSPs can be weakly coupled to visible sector thru a mediator or "portal"
- <u>High intensity proton beams</u> produce large number of photons from brem, DY and neutral mesons decays → Make it possible to contemplate couplings of new U(1) gauge to SM γ

• Detection through an electron scattering, N(n) recoil or 1, 2 γ final states

June 22, 2023

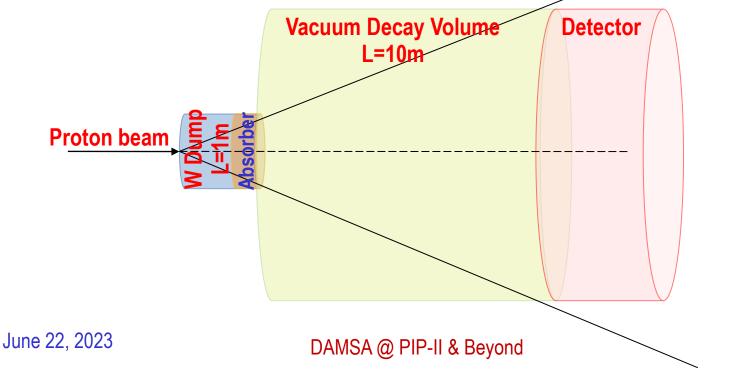
DAMSA @ PIP-II & Beyond


What is DAMSA?

- A dark sector particle search and discovery experiment at low E, high intensity proton beam facility
- Stands for Dump produced Aboriginal Matter Search at an Accelerator (DAMSA)
 - 담사 (潭思) = 깊은생각 Rumination or Reflection
 - Jang et al., PRD 107, L031901 (2023)
- Aims to discover DSP's in the low mass regime at an accelerator → ideally E_{beam} below the pion threshold
 - Originally developed for 600MeV proton beams at a nuclear rare isotope facility
- The 800MeV PIP-II and the ACE beams fit the bill

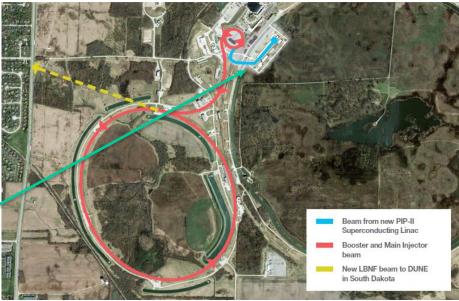
The goal is to build the experiment by 2029 in time for PIP-II
 June 22, 2023
 DAMSA @ PIP-II & Beyond
 4

DAMSA Physics Strategy


- Focus on Axion-like particles (ALP) in their <u>two-photon</u> final state via the Primakoff process as the use case
- Produce as many photons as possible in the beam source, namely the dump
- Capture as many ALPs as possible in as wide a mass range as possible
 - Shorten the distance from the source to the detector
 - Increase the detector angular coverage
- Minimize the backgrounds from neutral particles
 - Neutron spallation
 - □ v QE, RES, and NC interactions June 15, 2023 ASW - DAMSA @ PIP-II and ACE

5

DAMSA Exp. Concept


- Inject and absorb as many low-E (1GeV or less) protons and produce as large number of γ in the dump as possible
- Allow higher mass ALP's to decay with as small a number of neutrons escaping the dump as possible
- Place the detector as close to the dump as possible on axis to expand the mass reach to higher mass region

6

Accelerator Complex in PIP-II Era

- PIP-II provides
 - New SRF LINAC for injection into Booster at 800MeV (present 400MeV)
 - Booster cycle rates upgraded to 20Hz from current 15Hz
 - Increased proton beam intensity at 8GeV for 1.2MW beam power from main injector
- PIP-II era begins in <u>2029</u>, DUNE 2031
 - Mu2e (8GeV)
 - Fixed target, test beams (120 GeV)
 - 0.8 GeV beam available for other exp, eg. With PAR and may be other options for beam dump

June 22, 2023

DAMSA @ PIP-II & Beyond

B. Flauger

DAMSA Requirements – The Beam

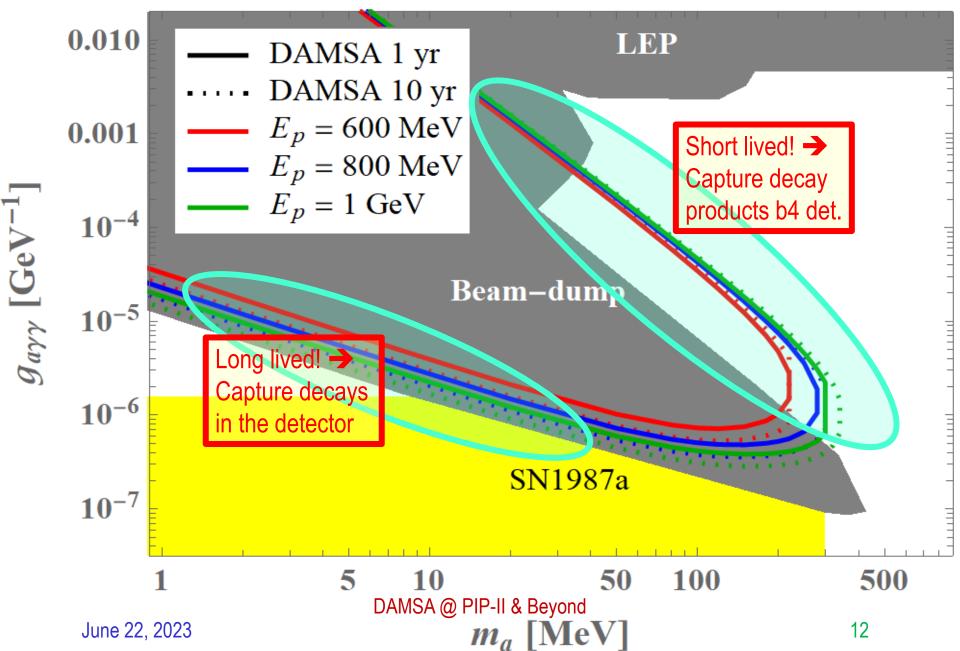
- PIP-II LINAC's 800MeV beam energy enables access to the tangible ALP mass range
- Need to have as much beam as possible
 - ~1x10²³ POT/yr was assumed in the PRD 600MeV physics study
 - ~1x10²³ POT/yr for PIP-II 800MeV and 1GeV physics study
- PIP-II CW beam characteristics (total proton current: **2mA**)
 - Bunch length: 1ns
 - N_p /bunch : 8x10⁷ p/bunch
 - Bunch spacing: 6.2ns
- PIP-II CW Chopping to mimic pulsed beam structure
 - micro-pulses w/ two 14x10⁷ p-bunches separated by 6.2ns and the next pair separated by 16.2ns, repeating every 22.4ns
 - Each micro–pulse lasts for 0.6ms spaced every 50ms → I=2mA/micro–pulse

June 22, 2023

DAMSA Requirements – The Dump

- What material on what depth would be most optimal?
 - Produce most photons per unit length
 - Produce least number of neutrons out the dump
 - Absorb most particles per unit length
- GEANT4 based study shows 1m diameter, 1m long cylindrical shape tungsten dump (~10 nuclear interaction lengths) produces most photons and absorb ~99.995% 600MeV protons

 Neutrons produce additional photons in the dump, providing additional source for ALP
 June 22, 2023
 DAMSA @ PIP-II & Beyond
 9

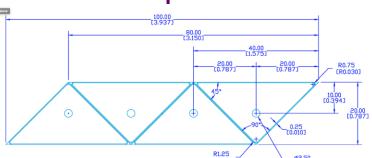

DAMSA Requirements – The Detector 1

- What detector capabilities are needed to
 - Capture as many ALP's as possible in as wide a mass range as possible
 - <u>High mass</u> ALP's have <u>shorter lifetime</u> → Need to be able to capture two photons from the ALP decays upstream of the detector
 - Low mass ALP's live longer → Allow them to decay and interact in the detector and capture decay products upstream of the detector as much as possible
 - Reject accidental backgrounds from neutron spallation in the detector
 - Minimize the materials upstream of the detector for neutron interactions
- Place a large decay volume in vacuum to fill the gap between the dump and the detector → Extends effective detector range
 - Allows high mass ALPs to decay → giving clear vertices where the two final state photons originate from
 - Neutron interactions confined to the decay chamber walls

DAMSA Requirements – The Detector 2

- What are other possible ways to further reduce the background from neutron spallation? → Aim to reduce by order >=10¹⁰
 - Leverage the speed of the neutrons → Neutrons are 10 1000 times heavier than the ALPs, thus for the given momentum, the arrival time of the neutron induced photon accidentals would be delayed over ALP's
 - Leverage the distance of the closest approach of the two photon traces
 - Require the traceback of the overlapping two photon momentum sum to point the dump
 - Invariant mass of the two photon momenta be within the interested mass range
 - Require the arrival time difference between two photons be close to 0
- A large number of neutrons have low kinetic energy → Require the photon energy to be greater than 5 MeV (detector threshold ~1MeV)

Expected DAMSA Sensitivity



DAMSA Detector Characteristics

- Based on the concept studies using GEANT4 and neutron background rejection
 The detector must be
 - Capable of measuring up to 500 MeV photons with an MeV or better mass resolution
 - Fine granularity for superb shower position (1cm or better) and angular resolutions
 - Fast timing capability, ideally at the sub-ns level resolution

Potential DAMSA Detector Technology A total absorption EM calorimeter

- Sufficient depth to absorb photons up to 500MeV
- Further optimization for low mass ALP in progress
- Crystal or plastic scintillation counter with fine lateral and longitudinal granularity (M~160t)
 - A thin (<5cm) triangular pixels with a fast photon detector attached to the pixel
 - Lateral and longitudinal granularity
 - SPAD, MCP, Hybrid SiPM, etc

 A study to develop the most optimal detector for the physics has been ongoing

June 22, 2023

Potential DAMSA Experiment Timeline

- Through Dec. 2023 : Form a collaboration and prepare a proposal to Fermilab PAC
 - Internationality would be an important factor
 - Expanded physics goals and sensitivity reach
 - Detector design and rough cost estimates
- Jan. 2024: Submit the DAMSA proposal to PAC
- 2024 2025/2026: experiment approval and project establishment
- 2025/2026 2028: experiment construction
- 2029: Complete the detector construction and start commissioning for data taking

DAMSA Collaboration Building

- DAMSA has been introduced to the community throughout the past 2 years, more intensely in 2023
 - Multiple presentations made at conferences and workshops
 - The concept was included in a few Snowmass2021 white papers
 - In the workshop on physics opps at PIP-II BD and beyond at Fermilab 5/10 5/13/23, the discussion on DAMSA experiment occurred 5/12 5/12/23, followed by a presentation at ACE Science workshop @ FNAL
 - Introduced to Fermilab leadership April and May 2023
- The collaboration consists of
 - Lead Investigators: Jae Yu and Juan Estrada (FNAL)
 - Institutions expressed interests thus far:
 - US (7): FNAL, OU, TAMU, UCR, UCI, CSU, UTA
 - SK (6): SNU, UoS, KNU-CHEP, Korea U., Korea U. Chochiwon Campus, KyungHee U.
 - European colleagues are welcome to join in!!

June 22, 2023

DAMSA @ PIP-II & Beyond

Conclusions

- DAMSA is a DSP search and discovery experiment that leverages high intensity, low energy proton beams
 - ALP and other physics topics will be explored
- Detailed GEANT based studies performed for detector parameter requirements → Optimization in progress
 - Neutron background consideration
- Building DAMSA collaboration (7 US + 6 SK) w/ the goal to submit a proposal to Fermilab PAC Jan. 2024
- DAMSA presents an excellent opportunity for Fermilab's PIP-II and ACE to become an LLP search facility in the kinematic regime complimentary to the LHC

Parting Questions

- What other physic topics can we do with the DAMSA experiment configuration?
 - Is there a SM measurement DAMSA can contribute?
- What modifications to DAMSA experimental configuration to dramatically expand the physics reach?
- What are the tools necessary for DAMSA physics reach in a timely manner?