Imperial College London

MK single pion production model

Minoo Kabirnezhad m.kabirnezhad@imperial.ac.uk

NuFACT Seoul, Aug. 22, 2023

Shallow/Deep inelastic scattering (SIS/DIS) transition

Minoo Kabirnezhad

Resonant interaction

- $\Delta(1232)$ resonance
- 1- π production
- $P_{11}(1440), D_{13}(1520)$ and $S_{11}(1535)$
- $2-\pi$, η , etc. production
- About 13 resonances overlap

Imperial College London

Minoo Kabirnezhad

Non-resonant interaction

- Chiral-perturbation theory Lagrangian (ChPT)
- Hybrid model
- Reggeized Chiralperturbation theory (ReChi)

Tensions between MiniBooNE and MINERvA

 Tensions between MiniBooNE and MINERvA for single pion production measurements on CH₂ and CH targets in the first resonance region.

- Degree of freedom at E < 1 GeV (MiniBooNE) is hadrons
- Degree of freedom at E > 1 GeV (MINERvA) is a mixture of hadrons and partons

Goal: New approach for building models that have the **maximum impact** on our ability to extract and interpret interesting physics measurements.

- 1. Improving a model through detailed **theoretical calculations** (extension to a large enough Kinematic regions)
- 2. Transforming the model to something that could be easily and efficiently **incorporated into event generators**
- 3. Studying the **systematic uncertainties** of the theoretical model
- 4. Providing a few adjustable **physics-based parameters**, or "knobs" which can be used in future measurements

MK model

M. Kabirnezhad <u>Phys. Rev. D 97 (2018)</u> <u>Phys. Rev. D 102 (2020)</u> <u>Phys.Rev.C 107 (2023)</u>

- MK model describes single pion production in neutrino-nucleon interactions
- The calculation is based on helicity amplitudes
- Vector Meson Dominance (VMD) form factor model is used for both resonant and non-resonant interactions
- Q²-evolution is made by using QCD calculations and quark-hadron duality.
- W-evolution is made by using Regge trajectory and Hybrid model

R. González-Jiménez, et al Phys. Rev. D **95** (2017)

Vector Meson Dominance (VMD model)

Representation of electron scattering:

Non-perturbative (low Q²)

 Vector mesons propagate between the virtual photon and the nucleon G. Vereshkov and N. Volchanskiy PRD **76**, 073007 (2007)

Perturbative (high Q²)

 schematic quark model of VMD model

MK model

Resonant interaction

 Several resonances contribute at different invariant mass (W)

Non-resonant bkg

- Chiral perturbation at low W < 1.4 GeV
- Regge trajectory at high W
- Hybrid model

MK model

- Vector Meson

 Dominance (VMD)
 model describes formfactors in nonperturbative domain
- It can reproduce Q²evolution of formfactors to asymptotically join QCD expectations

Imperial College

London

Valid kinematic region region for MK model

Minoo Kabirnezhad

Electron scattering data

 A variety of measurements of single pion electroproduction on protons and "neutrons" have been performed at CLAS in a wide range of Q² (0.16 – 6.00) GeV² and W(1.1 – 2.01) GeV CLAS database

Channels	Beam Energy (GeV)	Q ² Range (GeV/C) ²	W Range (GeV)	# data points	# experiments	loint
$ep \rightarrow en + \pi^{\scriptscriptstyle +}$	1.05 – 5.75	0.16 - 4.16	1.10 – 2.01	≈ 15000	5 data sets	
$ep \to ep + \pi^0$	1.05 – 5.75	0.16 – 6.00	1.10 - 1.68	≈ 16000	6 data sets	fit
$\underline{en} \rightarrow ep + \pi^{-}$	2.030	0.40 - 1.00	1.10 - 1.83	≈ 7000	1 data set	J

Total \approx **38000** data points

First measurements on "neutron" target

- In the first resonance peak the neutron and proton form-factors are the same for the Δ resonance
- Even though MAID2007 is the latest version, the second resonance peak from this version is shifted relative to the experimental neutron data

Y. Tian *et al.* [CLAS] Phys. Rev. C **107** (2023)

Experimental W distribution event in comparison to various MAID models

Vector current

- Performed a Joint fit to determine the **proton** and "**neutron**" formfactor (for nucleon & 17 resonances in nonresonant interactions) in order to determine the vector form-factor in the neutrino pion production model
- Covariance matrix is obtained and systematic uncertainties are studied. Reduced $\chi^2 \approx 2.2$
- The vector form-factors are obtained from proton and neutron form-factors

$$F_{i}^{V} = F_{i}^{n} - F_{i}^{p} \left(I = \frac{1}{2}\right)$$
$$F_{i}^{V} = F_{i}^{p(n)} \left(I = \frac{3}{2}\right)$$

Data/models comparison at low Q²

Minoo Kabirnezhad

Data/models comparison at high Q²

M. Kabirnezhad <u>Phys.Rev.C</u> 107 (2023)

 $ep \rightarrow en + \pi^+$

London

Minoo Kabirnezhad

Neutrino interactions

- Using vector and axial-vector meson dominance form-factor model
- I assume that the gauge bosons hadronized to a set of vector and axial mesons, so interaction between neutrino and nucleon occurs via meson exchange
- Chiral symmetry of strong interactions requires coupling constants of left and right fields to be equal. Therefore the asymptotic behaviour of vector and axial form-factors are the same
- Chiral symmetry reduces number of parameters in the axial form-factors!

Axial current (form-factor)

- Used Axial-vector Meson Dominance model for the axial form factor
- Used a joint fit to determine the axial current using:
 - 1. ANL & BNL measurements ($E_{\nu} \approx 1 \ GeV$)
 - 2. BEBC measurements ($E_{\nu} \approx 20 \ GeV$)
 - 3. Pion scattering data to satisfy Partially Conserved Axial Current at $Q^2 = 0 \text{ GeV}^2$
- The Axial current is not finalised yet. The result is satisfactory for the first resonance region so far

Conclusion

- The MK model is extended to high Q² (up to 6 GeV²) and W (up to 2 GeV)
- Neutron and proton form-factors (full vector form-factors) are determined in a joint fit using all single pion production data on proton and neutron (about 38000 data points)
- Systematic uncertainty of the model is evaluated . The free parameters (knobs) can be used in neutrino measurements
- The data-model agreements is due to model improvements, the use of significant amount of experimental data and developments in the methodology of analysis and evaluation