The MicroBooNE cross section program with a special focus on the transverse kinematic imbalance analysis

Afroditi Papadopoulou <u>apapadopoulou@anl.gov</u> on behalf of the MicroBooNE Collaboration 8/25/2023, NuFACT 23, Seoul, Korea

MicroBooNE Data Events

• Largest available neutrino-argon data set with ~500k recorded neutrino interactions

• Over 10 released and more than 30 active MicroBooNE cross section analyses

• Multiple topologies investigated

More details in <u>Avinay</u>, <u>Lee</u> & <u>Meghna's</u> talks

2

Already Public Results

CC inclusive

- 1D & 2D ν_µ CC inclusive @ BNB <u>Phys. Rev. Lett. 123, 131801 (2019)</u>
- 1D ν_µ CC E_ν @ BNB
 Phys. Rev. Lett. 128, 151801 (2022)
- 3D CC E_v @ BNB <u>arXiv:2307.06413</u>, submitted to PRL
- 1D v_e CC inclusive @ NuMI <u>Phys. Rev. D105, L051102 (2022)</u> <u>Phys. Rev. D104, 052002 (2021)</u>

Pion production

• ν_µ NCπ⁰ @ BNB <u>Phys. Rev. D 107, 012004 (2023)</u> $CC0\pi$

- 1D ν_e CCNp0π @ BNB Phys. Rev. D 106, L051102 (2022)
- 1D & 2D v_{μ} CC1p0 π Kinematic Imbalance @ BNB arXiv:2301.03700 (accepted to PRL) arXiv:2301.03706 (accepted to PRD) submitted to PRL & PRD
- 1D ν_µ CC1p0π @ BNB
 <u>Phys. Rev. Lett. 125, 201803 (2020)</u>
- 1D ν_µ CC2p @ BNB <u>arXiv:2211.03734</u>, submitted to PRL
- 1D ν_µ CCNp0π @ BNB
 Phys. Rev. D102, 112013 (2020)

Rare channels

- η production @ BNB <u>arXiv:2305.16249</u>, submitted to PRL
- Λ production @ NuMI Phys. Rev. Lett. 130, 231802 (2023)

Already Public Results

CC inclusive

- 1D ν_µ CC inclusive @ BNB
 Phys. Rev. Lett. 123, 131801 (2019)
- 1D ν_µ CC E_ν @ BNB
 Phys. Rev. Lett. 128, 151801 (2022)
- 1D v_e CC inclusive @ NuMI

 $CC0\pi$

- 1D ν_e CCNp0π @ BNB
 <u>Phys. Rev. D 106, L051102 (2022)</u>
- 1D & 2D v_µ CC1p0 π Kinematic Imbalance @ BNB arXiv:2301.03700, arXiv:2301.03706

submitted to PRL & PRD

<u>Phys. Rev.</u> Phys. Rev.

Opportunity to extensively benchmark neutrino event generator cross section predictions necessary for precision measurements

Pion production

ν_µ NCπ⁰ @ BNB
 Phys. Rev. D 107, 012004 (202)

Phys. Rev. D102, 112013 (2020)

Rare channels

- η production @ BNB <u>arXiv:2305.16249</u>
- Hyperon (Λ,Σ) production @ NuMI <u>arXiv:2212.07888</u>, accepted to PRL

µBooNE

Double-Differential Single-Proton Knockout

arXiv:2301.03700 (accepted to PRL) arXiv:2301.03706 (accepted to PRD)

- First double-differential single-proton cross section measurement on argon
- Targeting nuclear effects
- Identified kinematic variables and phase-space regions with sensitivity to Fermi motion & final state interactions

CC1p0π Quasielastic-like Signal Definition

• 1 muon

 $100 < P_{u} < 1200 \text{ MeV/c}$

• 1 proton

 $300 < P_p < 1000 \text{ MeV/c}$

- No π^{\pm} with $P_{\pi} > 70 \text{ MeV/c}$
- No π^0 or heavier mesons
- Any number of neutrons

9051 CC1p0π candidate data events CC1p0π ~10% efficiency ~70% purity

arXiv:2301.03706, arXiv:2301.03700 (accepted to PRL and PRD) * Phys. Rev. D 105, 072001 (2022)

MC: GENIE v3.0.6 G18_10a_02_11b + tune* Nieves QE & MEC, Berger Sehgal RES

Transverse missing momentum $\delta \mathbf{p}_{\mathrm{T}} = | \mathbf{p}_{\mathrm{T}}^{\mu} + \mathbf{p}_{\mathrm{T}}^{p} | = 0$

Transverse projections equal and opposite due to momentum conservation

Orientation of the imbalance $(\delta \alpha_T)$ also meaningful

-**p**^μ

δα

p^p_T

Transverse Missing Momentum δp_{T} Cross Section

High Statistics→Into the Multiverse!

- Extension to 2D for the first time on argon
- Probe regions with greater model discrimination power

High Statistics→Into the Multiverse!

- Extension to 2D for the first time on argon

High Statistics→Into the Multiverse!

QE-dominated region

- No high transverse missing momentum tail
- Ideal part of phase-space to study Fermi motion
- Results consistent with local Fermi gas distribution

G18 = GENIE v3.0.6 G18 10a 02 11b + tune* GiBUU = GiBUU 2021

15

arXiv:2301.03706 (accepted to PRL) * Phys. Rev. D 105, 072001 (2022)

High Statistics→Into the Multiverse! MEC/RES/FSI-dominated

- FSI predictions in good agreement with data
- Minimal no-FSI contributions at high δp_{T}
- High $\delta \alpha_T \& high \delta p_T$ part of phase-space ideal to test FSI / multinucleon effects

<u>arXiv:2301.03706</u> (accepted to PRL) * <u>Phys. Rev. D 105, 072001 (2022)</u> G18 = GENIE v3.0.6 G18_10a_02_11b + tune* GiBUU = GiBUU 2021

Already Public Results

CC inclusive

- 1D & 2D ν_µ CC inclusive @ BNB <u>Phys. Rev. Lett. 123, 131801 (2019)</u>
- 1D ν_µ CC E_ν @ BNB <u>Phys. Rev. Lett. 128, 151801 (2022)</u>
- 3D CC E_v @ BNB <u>arXiv:2307.06413</u>, submitted to PRL
- 1D v_e CC inclusive @ NuMI <u>Phys. Rev. D105, L051102 (2022)</u> <u>Phys. Rev. D104, 052002 (2021)</u>

Pion production

• ν_µ NCπ⁰ @ BNB <u>Phys. Rev. D 107, 012004 (2023)</u> $CC0\pi$

- 1D ν_e CCNp0π @ BNB Phys. Rev. D 106, L051102 (2022)
- 1D & 2D v_{μ} CC1p0 π Kinematic Imbalance @ BNB arXiv:2301.03700 (accepted to PRL) arXiv:2301.03706 (accepted to PRD) submitted to PRL & PRD
- 1D ν_µ CC1p0π @ BNB
 <u>Phys. Rev. Lett. 125, 201803 (2020)</u>
- 1D ν_µ CC2p @ BNB <u>arXiv:2211.03734</u>, submitted to PRL
- 1D ν_µ CCNp0π @ BNB
 Phys. Rev. D102, 112013 (2020)

Rare channels

- η production @ BNB <u>arXiv:2305.16249</u>, submitted to PRL
- Λ production @ NuMI Phys. Rev. Lett. 130, 231802 (2023)

Already Public Results

CC inclusive

1D & 2D ν_µ CC inclusive @ BNB
 <u>Phys. Rev. Lett. 123, 131801 (2019)</u>

• 1D ν_μ CC E_ν @ BNB <u>Phys. Rev. Lett. 128, 151801 (2022)</u>

• 3D CC E_v @ BNB

arXiv:2307.06413, submitted to PRL

1D v_e CC inclusive @ NuMI
 Phys. Rev. D105, L051102 (2022)
 Phys. Rev. D104, 052002 (2021)

Pion production

ν_µ NCπ⁰ @ BNB
 Phys. Rev. D 107, 012004 (2023)

CC0π

- 1D ν_e CCNp0π @ BNB
 Phys. Rev. D 106, L051102 (2022)
- 1D & 2D ν_µ CC1p0π Kinematic Imbalance @ BNB <u>arXiv:2301.03700</u> (accepted to PRL) <u>arXiv:2301.03706</u> (accepted to PRD) submitted to PRL & PRD
- 1D ν_µ CC1p0π @ BNB <u>Phys. Rev. Lett. 125, 201803 (2020)</u>
- 1D ν_µ CC2p @ BNB <u>arXiv:2211.03734</u>, submitted to PRL
- 1D ν_µ CCNp0π @ BNB
 Phys. Rev. D102, 112013 (2020)

Rare channels

- η production @ BNB <u>arXiv:2305.16249</u>, submitted to PRL
- Λ production @ NuMI

Phys. Rev. Lett. 130, 231802 (2023)

v_{μ} CC Inclusive 3D

- Extension of
- 0.6 • First triple-differential 0.4 cross section result 0.2 on argon
- Extensive validation of model accounting for missing energy
- All event generators yield disagreements in different parts of the phase-space

arXiv:2307.06413 submitted to PRL

$v_{\mu}CC2p0\pi$

- Dominated by MEC events (~80%)
- NuWro overprediction at low values due to back-to-back proton orientation
- GENIE predictions result in better agreement

NC π^0

- First measurement on argon
- Measure 0p and 1p channels (and their combination)
- Background constraint for electron & photon analyses
- NEUT yields overall best agreement

Λ Baryon Production

- First measurement with a modern detector
- Very rare process 5 observed events
- \bullet Identified Λ baryons through invariant mass and separated vertex

Summary

- Diverse and comprehensive cross section program with novel measurements
- Exploring lots of different channels and variety of analysis techniques
- Sensitivity to expose inconsistencies between modeling approaches
- Haven't yet analyzed our full data set (x2 stats)

Wealth Of Cross Section Results To Follow!

CC inclusive

- v_{μ} CC inclusive @ NuMI
- v_e^{\prime}/v_{μ} ratios @ BNB, NuMI
- 3D E_{v} , E_{μ} , hadronic energy @ NuMI & BNB
- anti-v_e @ NuMI

Pion production

- ν_{μ} CC1 π^{+} @ BNB, NuMI
- v_{μ}^{\prime} CCN π @ NuMI
- $1D v_{\mu} CC \pi^0 @ BNB$
- 2D ν_{μ}^{Γ} CC/NC π^0 @ BNB
- 2D $v_{e,\mu}^{\Gamma}$ NC π^0 @ BNB

$CC0\pi$

- 2D v_{μ} CC1p0 π Generalized Kinematic Imbalance @ BNB
- v_{μ} CC0 π inclusive @ BNB
- $2D v_{\mu} CCNp0\pi @ BNB$
- 1D v_e^{Γ} CC0 π Np @ NuMI
- 1D ν_μ NC1p0π @ BNB

Rare & novel channels

- v_{μ} CC Kaon @ BNB, NuMI
- MeV-scale Physics in MicroBooNE
- Neutrons @ BNB

Backup Slides

TABLE IV. Tuned parameter values and uncertainties after fitting to T2K CC0 π data for the nominal simulation and three tunes that build to the final four parameter tune. Note that postfit χ^2 values are quoted here only for the 58 bins included in the fit (excluding the highest muon momentum bin in each cos θ bin), and using diagonal elements of the covariance matrix only. In the text and figures, pre- and postfit χ^2 comparisons are also quoted for the full T2K dataset of 67 bins. "Norm." is an abbreviation for normalization.

	MaCCQE fitted value	CC2p2h Norm. fitted value	CCQE RPA Strength fitted value	CC2p2h Shape fitted value	$\frac{\text{T2K}}{\chi^2_{\text{diag}}/\text{N}_{\text{bins}}}$
Nominal (untuned)	0.961242 GeV	1	100%	0	106.7/58
Fit MaCCQE + CC2p2h Norm.	$1.14\pm0.07~{ m GeV}$	1.61 ± 0.19	100% (fixed)	0 (fixed)	71.8/58
Fit MaCCQE + CC2p2h Norm + CCQE RPA Strength	$1.18\pm0.08~\text{GeV}$	1.12 ± 0.38	$(64 \pm 23)\%$	0 (fixed)	69.7/58
Fit MaCCQE + CC2p2h Norm + CCQE RPA Strength + CC2p2h Shape	$1.10\pm0.07~\text{GeV}$	1.66 ± 0.19	$(85\pm20)\%$	$1^{+0}_{-0.74}$	52.5/58

FIG. 7. Correlations between parameters after fitting to T2K $CC0\pi$ data.

Phys. Rev. D 105, 072001 (2022)

Nuclear Effects in Event Generators

Rev. Mod. Phys. 89, 045002 (2017)

Struck nucleon motion in argon

Single-Proton Knockout

- Dominated by Charged Current Quasi-elastic (CCQE) interactions
- Simple single muon-proton events
- Dominant at MicroBooNE energies

TKI Neutrino Measurements

Experiment	Target	References			
Т2К	СН	Phys.Rev.D 103 11, 112009 (2021) Phys. Rev. D 98, 032003 (2018)			
MINERvA	СН	Phys. Rev. Lett. 121, 022504 (2018) Phys. Rev. D 101, 092001 (2020) Phys. Rev. D 102, 072007 (2020)			

But none on argon up to now!

TKI Neutrino Measurements

Experiment	Target	References
Т2К	СН	Phys.Rev.D 103 11, 112009 (2021) Phys. Rev. D 98, 032003 (2018)
MINERvA	СН	Phys. Rev. Lett. 121, 022504 (2018) Phys. Rev. D 101, 092001 (2020) Phys. Rev. D 102, 072007 (2020)
MicroBooNE	Ar	<u>arXiv:2301.03706</u> (accepted to PRL) <u>arXiv:2301.03700</u> (accepted to PRD)

First single- and double-differential single-proton cross section measurements on argon in transverse kinematic imbalance

Transverse Missing Momentum δp_{T}

• S = Signal, B = Background

- **QE** dominance in peak below Fermi momentum (~250 MeV/c)
- MEC/RES mainly in high momentum tail

GENIE v3.0.6 G18_10a_02_11b + tune* Nieves QE & MEC, Berger Sehgal RES ³³

Transverse Orientation $\delta \alpha_{_{\rm T}}$

<u>arXiv:2301.03706</u> (accepted to PRD)

* Phys. Rev. D 105, 072001 (2022)

- + $\delta \alpha_{_{\rm T}}$ asymmetry due to proton FSI
- MEC/RES fractional contribution enhanced in ~180° region

GENIE v3.0.6 G18_10a_02_11b + tune* Nieves QE & MEC, Berger Sehgal RES

Transverse Orientation $\delta \alpha_{_{\rm T}}$

Need to move from event distributions to cross sections→ Wiener-SVD unfolding <u>JINST 12 P10002 (2017)</u> More details in backup slides

<u>arXiv:2301.03706</u> (accepted to PRD) * <u>Phys. Rev. D 105, 072001 (2022)</u>

- Output quantities in regularized space
- Unfolded data spectrum
- Smearing Matrix A_C
 *Applied on theory predictions and included in data release

- Output quantities in regularized space
- Unfolded data spectrum
- Smearing Matrix A_C

*Applied on theory predictions and included in data release

0	0.003	-0.06.0.05.0.09.0.08	0.03 0.00	0.10	0.22	0.27	1
0. ت]	0.15 0.14 0.07 0.08	0.14 0.19 0.20 0.16	0.10 0.12	0.27	0.38	0.42	-0.8
10 feV	6 -0.00 0.06 0.16 0.19	0.13 0.04 0.00 0.02	0.15 0.33	0.40	0.24	0.16	-0.6
$\Sigma_{\rm L}$	-0.05-0.02 0.05 0.09	0.05 -0.02 -0.01 0.12	0.33 0.39	0.25	0.05	-0.04	0.0
$\dot{\mathbf{Q}}$ 0.	4 0.13 0.12 -0.03 -0.09	0.05 0.15 0.26 0.25 0.00 0.13 0.19 0.10	0.25 0.18 0.09 -0.03 -0.03 -0.10	-0.03 -0.04 -0.07	-0.04 0.01 -0.01	-0.06 0.04 0.01	-0.4
	0.03 -0.03 -0.08 -0.00 0 .02 0.04 0.07 0.20	0.19 0.27 0.21 0.10 0.30 0.19 0.11 0.05	0.04 0.02 0.02 0.03	0.04 0.04	0.06 0.03	0.06 0.03	-0.2
д 0.	· ∠ 0.01 0.13 0.34 0.41 -0.01 0.15 0.34 0.25	0.21 0.03 -0.01 0.00 0.05 -0.04 -0.05 -0.02	0.04 0.04 0.04 0.04	0.01	-0.03 -0.03	-0.04 -0.04	_0
	0.61 0.52 0.20 0.09	0.12 0.15 0.14 0.07	-0.01 -0.04	-0.02	0.01	0.03	0
	True $\delta p_T [GeV/c]$						

JINST 12 P10002 (2017)

Input Quantities

- Measurement (Data)
- Background (Cosmics + MC)
- Response Matrix (MC)
- Total Covariance Matrix (MC)

Cross Section Extraction with Wiener SVD Unfolding JINST 12 P10002 (2017)

Input Quantities

- Measurement (Data)
- Background (MC)
- Response Matrix (MC)
- Total Covariance Matrix (MC)

Probability that a generated event is reconstructed and selected

Diagonal matrix with flat ~6% efficiency

Input Quantities

- Measurement (Data)
- Background (MC)
- Response Matrix (MC)
- Total Covariance Matrix (MC)

Includes information on statistical and systematic uncertainties

Uncertainties

- + Statistical (1.5%)
- + Number of argon targets (1%)

Total (11%)

Systematics-dominated analysis

v_{μ} CC Inclusive 1D

- Unfolding using Wiener-SVD JINST 12 P10002 (2017)
- First ever measurement of cross section as a function of energy transfer
- GiBUU results in best performance

v_{μ} CC Inclusive 1D

Observe the visible hadronic energy, muon energy and direction
Use them to test model validity due to missing hadronic energy

v_{μ} CC Inclusive 3D

44

- First neutrino-argon cross sections for an exclusive 2p final state
 - Various observables studied
- γ_{Lab}: angle between the two protons
 Sensitive to modeling choices for MEC and QE

- First neutrino-argon cross sections for an exclusive 2p final state
 - Various observables studied
- γ_{Lab} : angle between the two protons - Sensitive to modeling choices for MEC and QE

MICROBOONE-NOTE-1117-PUB

- First neutrino-argon cross sections for an exclusive 2p final state
 - Various observables studied
- γ_{Lab} : angle between the two protons
 - Sensitive to modeling choices for MEC and QE
- Data-MC shape & normalization differences identified

NC π^0

Λ Production

Event Selection

- Selection identifies a muon candidate and a proton-pion candidate pair
- Proton-pion "island" activity separated from muon candidate
- \bullet Proton-pion kinematics consistency with Λ baryon decay

Also see poster by <u>C.Thorpe</u> MICROBOONE-NOTE-1097-PUB

Λ Production

 Λ baryon decay consistency

• Keeping events with $1.09 < invariant mass W < 1.14 GeV/c^2$ and angular deviation $\alpha < 14^{\circ}$

Other Hyperon

EXT

Other v

50

MicroBooNE Simulation, Preliminary NuMI FHC, 1.0 × 10²¹ POT

Signal $\times 20$

Dirt

450 400 400

350 300

η Meson Production

- Unique probe of higher resonances such as N(1535)
- Identified via decay to 2γ with invariant mass of 548 MeV
- Include protons to estimate reconstructed invariant mass of hadronic system

arXiv:2305.16249, submitted to PRL

See David's talk