η production in neutrino interactions on argon with MicroBooNE arxiv:2305.16249

David Caratelli / UC Santa Barbara August 25th 2023 / NuFact '23 On behalf of the MicroBooNE collaboration

$\gamma\gamma$ event from data

What's the difference between these two MicroBooNE data events?

Selected η candidate from data

Motivation

4

MicroBooNE Rare Searches

more refined analysis tools + larger dataset

probing exciting rare signatures!

Expanding breadth of our cross-section program.

Other rare process recently published:

"First Measurement of Quasielastic Λ Baryon Production in Muon Antineutrino Interactions in the MicroBooNE Detector" <u>PRL 130 (2023) 23, 231802</u>

Subset of uB xsec results. References: <u>PRL 123 (2019) 13, 131801</u>, <u>PRD 104 (2021) 5, 052002</u>, <u>PRL 125 (2020) 20, 201803</u>, <u>PRD 99 (2019) 9, 091102</u>, <u>PRD 107 (2023) 1, 012004</u>,

Motivation: RES interactions

Resonant (RES) interactions play a critical role in GeV-scale accelerator neutrino physics program.

- 1. DUNE oscillations
- 2. γ from RES background to BSM searches

RES interactions

simulation

GENIE v3_00_06_G18_10a_02_11a Resonant production in MicroBooNE

Resonant (RES) interactions play a critical role in GeV-scale accelerator neutrino physics program.

"RES" is a broad category...

- $\Delta^{++} \rightarrow p + \pi^+$, $\Delta^+ \rightarrow p + \pi^0$,
- Many resonances beyond the $\Delta(1232)$
 - Hard to target. Poorly constrained
 - Experimental focus on $\pi \rightarrow \Delta$ "swamps" higher order resonances.

Resonant *v* interactions

O(90%) of RES interactions in MicroBooNE excite Δ (1232) state which decays to pions.

η production

 Δ (1232) is one of many resonances.

N(1535) and N(1650) have significant branching ratio to η .

N(1535) dominates η production over other channels.

 Δ (1232) is one of many resonances.

N(1535) and N(1650) have significant branching ratio to η .

 $\eta \rightarrow \gamma \gamma$ cleanest signature. Branching ratio is 40%.

Resonant production

Motivation: v interaction modeling

Typically measure inclusive RES interactions through final-state π .

 η channel by its nature is "isolating" N(1535) resonance.

 \rightarrow measurement of exclusive RES interactions beyond Δ (1232).

 \rightarrow new orthogonal handle w.r.t. Δ (1232). Improved model constraints.

Overall, η measurements offer an exciting new way to characterize an important category of interactions which impacts DUNE / SBN v oscillation & BSM programs.

Pandora reconstruction [<u>EPJC 78 (2018) 1. 82</u>] Tools from "LEE" analyses [<u>PRD 105 (2022) 11, 112004</u>]

"box-cut" selection: 2-shower topology.

Leveraging $\eta \rightarrow \gamma \gamma$ decay kinematics is key:

- Less boosted $\gamma\gamma$ for equal energy
- Purity: $3.5\% \rightarrow 49.9\%$
- Efficiency: $19.5\% \rightarrow 13.6\%$

50% purity

Dominant backgrounds:

- $1\pi^0$ events
- multi- π^0 events

Constrain with targeted sidebands:

- $1\pi^0$: M_{YY} < 250 MeV
- $2\pi^0$: 4 reconstructed showers

Systematic uncertainty: $40\% \rightarrow 26\%$ Statistical uncertainty on data: 26%

v_x + Ar $\rightarrow \eta$ + x cross-section

 3.22 ± 0.84 (stat.) ± 0.86 (syst.) $10^{-41} \text{cm}^2/\text{nucleon}$

Hadronic system: N(1535)

When reconstructing invariant mass of hadronic system see consistency with higher order resonances!

Theoretical Landscape

Several existing calculations for η production in neutrino interactions:

"*Charged current neutrino and antineutrino induced eta production off the nucleon*". Fatima, M. Sajjad Athar, S. K. Singh, *Phys.Rev.D* 107 (2023) 3, 033002, <u>arXiv:2211.08830</u>

"Dynamical coupled-channels model for neutrino-induced meson productions in resonance region", S. X. Nakamura, H. Kamano, T. Sato <u>arXiv:1506.03403</u>

And more recent calculations following MicroBooNE result!

"Weak production of η mesons induced by $v_{\mu}(v_{\mu})$ at MicroBooNE energies", A. Fatima, M. Sajjad Athar, S. K. Singh arXiv:2307.12686

Looking forward to identifying how future measurements can best help support theoretical work and constrain models.

- CC and NC measurements
- Differential measurements

Outlook

Presented first measurement of η production in MicroBooNE

New tool to study RES interactions and unique probe for higher order resonances.

MicroBooNE has more to offer: full-dataset and NuMI beam!

SBND & DUNE-ND will offer additional opportunities for measurements of this process.

Backup

Past Measurements

Motivation: v interaction modeling

[7] W. Wittek *et al.* (BEBC WA59), Z. Phys. C 44, 175 (1989).
[8] I. Kochanek, PhD, Silesia University, Katowice (2015).

Background Constraint

Background Constraint

Constraint carried out through conditional covariance / block matrices as a one-bin measurement.

Modeling

Resonant production

η Branching Ratios in GENIE				
resonance	branching ratio	PDG values	$\mu B RES abundance [\%]$	$\mu B \eta$ abundance [%]
1440	0.12	< 0.01	2.82	10.9
1535	0.40	0.40 - 0.55	6.75	86.5
1650	0.015	0.15 - 0.35	0.13	< 0.3
1675	0.01	< 0.01	0.35	< 0.3
1700	0.04	"seen"	0.26	0.3
1710	0.22	0.10 - 0.50	N.A.	N.A.
1720	0.035	0.01 - 0.05	1.32	1.6

Motivation

N(1535) branching

Typically measure inclusive RES interactions through final-state π .

 η channel by its nature is isolating N(1535) resonance.

 \rightarrow measurement of exclusive RES interactions beyond Δ (1232).

 \rightarrow new orthogonal handle w.r.t. Δ (1232). Improved model constraints.

Overall, η measurements offer an exciting new way to characterize an important category of interactions which impacts DUNE / SBN ν oscillation & BSM programs.

Bonus: N(1535) has a large uncertainty in branching ratio to η . 30-55% according to PDG. *Interested in exploring if* <u>high-statistics measurement can provide competitive constraint</u>.

Motivation: proton decay

plots from Super-K Phys. Rev. D 96, 012003

Proton decay branching ratio to η provides competitive channel for proton lifetime limits.

Investigating η production and reconstruction in LArTPC important for future DUNE p-decay searches

Motivation: EM Calibrations

MicroBooNE, JINST 15 (2020) 02, P02007

Reconstruction and Measurement of O(100) MeV Energy Electromagnetic Activity from $\pi 0 \to \gamma \gamma$ Decays in the MicroBooNE LArTPC

MicroBooNE, Phys.Rev.D 105 (2022) 11, 112004

Search for an anomalous excess of charged-current νe interactions without pions in the final state with the MicroBooNE experiment

Cut-based selection:

- 1. Pandora v Slide ID
- 2. Fiducial volume.
- 3. two-shower cut.
- 4. π^0 quality cuts.
- 5. $M_{\gamma\gamma} > 250$ MeV.
- 6. Kinematics cuts.

Purity: 49.9% Efficiency: 13.6%

Cut-based selection:

- 1. Pandora v Slide ID
- 2. Fiducial volume.
- 3. two-shower cut.
- 4. π^0 quality cuts.
- 5. $M_{\gamma\gamma} > 250$ MeV.
- 6. Kinematics cuts.

Purity: $3.5\% \rightarrow 49.9\%$ Efficiency: $19.5\% \rightarrow 13.6\%$

