Recent developments in GENIE

The 24th International Workshop on Neutrinos from Accelerators (NuFact2023) August 21-26, 2023

Costas Andreopoulos

for the GENIE Collaboration

August 25, 2023

7enie

Table of contents

- 1. GENIE collaboration and mission
- 2. Release history and development directions
- 3. Summary of recent developments
- 4. Medium energy neutrino scattering in GENIE
- 5. High energy / ultra high energy neutrino scattering in GENIE
- 6. Low energy neutrino scattering in GENIE
- 7. New BSM generators in GENIE
- 8. Tuning programme
- 9. Summary
- 10. Supplementary slides
 - Further details on physics model implementation
 - Further details on physics tuning
 - New tools
- 11. References

Jenie

GENIE Collaboration and Mission

Luis Alvarez-Ruso [6], Costas Andreopoulos [9], Adi Ashkenazi [13], Joshua Barrow [10,13], Steve Dytman [12], Hugh Gallagher [14], Alfonso Garcia Soto [5,6] Steven Gardiner [4], Matan Goldenberg [13], Robert Hatcher [4], Or Hen [10], Igor Kakorin [8], Konstantin Kuzmin [7,8], Weijun Li [11], Xianguo Lu [15], Anselmo Meregaglia [2], Vadim Naumov [8], Afroditi Papadopoulou [1], Gabriel Perdue [4], Komninos-John Plows [11], Marco Roda [9], Alon Sportes [13], Noah Steinberg [4], Vladyslav Syrotenko [14], Julia Tena Vidal [13], Jeremy Wolcott [14], Qiyu Yan [3,15]

+ O(100) contributors

ANL, [2] CNRS/IN2P3, [3] UCAS, [4] FNAL, [5] Harvard, [6] IFIC,
[7] ITEP, [8] JINR, [9] Liverpool, [10] MIT, [11] Oxford, [12]
Pittsburgh, [13] Tel Aviv, [14] Tufts, [15] Warwick

Core mission (details in here)

- Modern event generation platform for the neutrino community
- State-of-the-art, universal comprehensive models of neutrino interactions, from MeV to PeV energy scales
- Complementary electron, hadron, BSM event generators
- Estimates of modelling uncertainties from a global analysis of scattering data (neutrino, electron, hadron probes)

zenie

GENIE plays a unique and useful role

'All models are wrong, but some are useful'

- George Box, British statistician (1976)

- Provides large constellation of alternative models and tunes
 - Helps interpreting data and diagnosing data/MC discrepancies
- Has community-supported experimental interfaces and tools
 - Integrated in the MC chain of all neutrino experiments, from low energy reactor expts to high energy CERN FPF expts and neutrino telescopes!
- **<u>De-facto</u>** common platform for model implementation.
- Provides community coordination and support
 - GENIE Incubator guides/supports large number of community developers
 - GENIE plays a crucial role reviewing, validating, improving, integrating community contributions
 - Regular User Forum; Established experiment liaisons
- Very **broad focus** and an emphasis on universal models.

Jenie

Brief release history

http://releases.genie-mc.org

GENIE v2.* (Auk series):

- Strong emphasis on tools and interfaces; Quick experiment adoption
- Well understood empirical model a "standard candle" for the analysis and interpretation of neutrino data, but severely outdated now

GENIE v3.* (Bear series):

- 2019-present; 7 releases (latest release, v3.4.0, published on Mar 2023)
- New technical capabilities (eg. tune support, continuous integration)
- Improved physics modelling / large constellation of alternative models
- Multiple comprehensive model configurations and tunes
- Powerful associated global analysis
- · Progress towards complete uncertainty evaluation of its main models

GENIE v4.* (Cheetah series):

- TBD; Likely in 2025
- In support of main experimental results in 2025-30 (JUNO, SBN, other)
- Key modelling and tuning upgrades

Jenie

Summary of main new developments since v3 - I

completed (released) - completed (appears in next release) - in progress - planning

Physics modelling:

- New 1p1h/2p2h models: SuSAv2, CRPA, QMC STA [10] [Josh Barrow et al.], SF [Noah Steinberger et al.]
- New pion production models: MK, DCC [53, 54] [lgor Kakorin et al.]
- Hadronization modelling: PYTHIA8 in AGKY, LEPTO interface to PYTHIA, Complete migration to PYTHIA8 [Robert Hatcher et al.], In-medium effects to hadronization [5] [CA]
- New FSI models: Interfaces to G4 Bertini and Liége (INCL) cascades.
- New nuclear de-excitation models: Modules based on TALYS [24] [Jie Cheng et al.]

Zenie

Summary of main new developments since v3 - II

- New nuclear initial state modelling: Correlated Fermi Gas
- Adding missing processes: Coherent NC 1γ production (Δ contribution, complete model [Marco Roda et al.])
- High energy neutrino interactions: NLO DIS cross-section model and event generation modules, Combining low-Q² data with pQCD using ML [23] [Alfonso Garcia et al.]
- Low energy neutrino interactions: CEvNS cross-section model and event generation modules
- Electron scattering: Bosted-Christy fit of eA scattering data, MAID E/M form factors [59] [Julia Tena Vidal et al.]
- New or upgraded **BSM** models: Boosted Dark Matter, Dark Neutrino, and Heavy Neutral Lepton (HNL) generators HNL extensions: Detailed treatment of polarization; Heavier HNL production and decay (enable searches above K mass, and w/ τ mixing); Extension of Lagrangian model machinery to incorporate user input [Komninos-John Plows et al.]

Zenie

Summary of main new developments since v3 - III

Tuning:

- New tune of non-resonance bkg using H/D data
- New neutrino-induced hadronization tune
- New nuclear CC0 π tune
- New global tune of TKI observables [Weijun Li et al.]
- FSI tuning and common uncertainty parameterization for all GENIE FSI codes

Tools and experimental interfaces:

- Event Library generator interface, enabling reuse of extended GENIE flux and geometry drivers by external generators.
- New toolkit for calculations based on tabulated hadron tensors.
- Complete support of GENIE tunes in ReWeight [Qiyu Yan et al.]

Impossible to summarize this body of work in 15'. Only a birds-eye view and very select highlights in this talk. More info: See the back up slides, referenced papers and other recent talks.

Genie

New cross-section modelling highlights - I

Complete implementation of the MK model [44, 45] by the Dubna group (\geq v3.6.0).

<mark>G</mark>enie

New cross-section modelling highlights - II

Complete implementation of the MK model [44, 45] by the Dubna group (\geq v3.6.0).

'jenie

New cross-section modelling highlights - III

Addition of Bosted-Christy fit [21, 25] of electron data by the Dubna group (\geq v3.4.0).

Data in the Bosted-Christy fit:

Data Set	Q^2_{Min} (GeV ²)	Q^2_{Max} (GeV ²)	∉ Data Points
E94-110 [5]	0.18	5	1259
E00-116 14	3.6	7.5	256
E00-002 [15]	0.05	2.1	1346
SLAC DIS [16]	0.6	9.5	296
Photoproduction (Old) [17-19]	0	0	242
Photoproduction (DAPHNE) [20]	0	0	57

- The model is presented as 2-fold cross section with valid kinematic range: $0 < Q^2 < 10 \text{ GeV}^2$ and 0 < W < 3 GeV.
- The model is inclusive. Currently not coupled to event generation.

1enie

Nuclear environment post hard scattering

An important feature of GENIE v3 is the availability of **4 interchangeable** and independently-developed FSI codes:

- INTRANUKE/hA, an effective model with limited applicability
- INTRANUKE/hN, a full home-grown INC model
- G4 Bertini cascade [41]
- Liége (INCL) cascade [22, 29, 30]

This allows a careful exploration of FSI effects and their systematics.

- This is complemented by important work led by JUNO (Jie Cheng et al.) [24] to develop GENIE nuclear de-excitation modules using the TALYS library.
- Currently, we're working with the authors of the TALYS modules to determine how to best integrate in GENIE, and eliminate double counting when coupled to FSI modules with own de-excitation routines.

Interface to the G4 Bertini cascade (\geq v3.2.0)

- G4 work [41] re-engineering the INUCL code [60].
- Model simulates the fast $(10^{-23} 10^{-22} \text{ s})$ phase of particle collisions by solving the Boltzmann equation on the average.
- Based on the INC model of Alsmiller, Bertini, Guthrie [40] [14] [15].
- Pre-equilibrium emission is based on the Griffin exciton model [39].
 - the excited state of the nucleus is characterised by the number of particles and holes created.
- For the simulation of the slower (10⁻¹⁸ 10⁻¹⁶ s) compound phase, several competing evaporation / break up models are used.
 - Nuclear explosion; Allowed in extreme cases (for light nuclei and excitation energies much larger than the binding energy).
 - Fission; Based on the model of Bohr and Wheeler [19]
 - Evaporation of nucleons & light fragments; Based on the Weisskopf theory of particle emission [62] [63] or, for lighter nuclei (A < 28), on the Generalised Evaporation Model [47].
 - Evaporation of photons, with discrete and continuous (from giant resonance de-excitation) energy levels; Modelled using tabulated transition probabilities

1enie

Interface to the Liége (INCL) cascade (\geq v3.2.0)

INCL is an advanced intranuclear cascade code [22, 29, 30].

Solid **quasi-classical treatment**: It is **almost parameter free**, and it is able to successfully describe at the same time a large set of various observables [22].

- Includes a realistic target density distribution
- The fate of all particles is followed as time evolves
- Incorporates a self-consistent determination of the stopping time
- Pauli blocking is implemented consistently with the progressive depletion of the Fermi sphere

Coupled with the ABLA [11, 37, 43] evaporation / fission code, which de-excites the remnant nucleus.

7enie

Comparisons of the 4 FSI models in GENIE

- New models have some substantial advantages.
- Comparisons of the FSI models accessible via GENIE highlights modelling uncertainties.

We aim to publish a paper where we **fully characterize the 4 FSI models** using our hadronic scattering data base, and then to develop a **common uncertainty model** for all 4 codes and **derive tunes** against the same datasets. Stay tuned!

7enie

Medium Energy Generator configurations - I

- Multiple physics configurations available
 - Main ones listed in this and the next page
 - Some minor perturbations to these also available
- Each configuration can have multiple tunes
- All configurations/tunes running out of the box

(National	Cross-section										
CME	Ground state	quasi-elastic	2p2h	eourose l	shallow and deep inelastic	coherent π	diffractive π	ΔS=1 quasi-elastic	$\Delta S=1$ inelastic	Hadronization	FSI
G00_00a G00_00b	RFG w/ NN tail	LS w/ dipole $F_A(Q^2)$	Dytman	RS	вү	RS				AGKY AG	hA
G18_01a G18_01b G18_01c G18_01d	RFG w/ NN tail	LS w/ dipole $F_A(Q^2)$	Dytman	RS tuned (2020)	BY tuned (2020)	RS	Rein	Pais	ASAV (opt.) (ν only)	AGKY tuned (2020) AG	hA18 hN18 INCL G4B
G18_02a G18_02b G18_02c G18_02d	RFG w/ NN tail	LS w/ dipole $F_A(Q^2)$	Dytman	BS tuned (2020)	BY tuned (2020)	BS	Rein	Pais	ASAV (opt.) (ν only)	AGKY tuned (2020) AG	hA18 hN18 INCL G4B

Acronyms:

REG: Relativistic Fermi Gas: LEG: Local Fermi Gas: 15: Llewellyn-Smith (guasi-elastic model); RS: Rein and Sehgal (resonance neutrino-production. and coherent pion production models); BY: Bodek and Yang; ASAV: M. Rafi Alam, I. Ruiz Simo, M. Saijad Athar and M.J. Vicente Vacas (single-Kaon production model): NAV: J.Nieves, J. Enrique Amaro, and M. Valverde (quasi-elastic model); NSV: J.Nieves, J. Ruiz Simo, and M.J. Vicente Vacas (2p2h model): AGKY: C.Andreopoulos. H.Gallagher, P.Kehavias and T.Yang (neutrino-induced hadronization model); AG: C.Andreopoulos, and H.Gallagher (charm hadronization model): hA: Effective intranuclear transport model in INTRANUKE: hN: Full intranuclear cascade (INC) model in INTRANUKE: INCL: The Liege INC model: G4B: Geant4 implementation of the Bertini INC model

yenie

Medium Energy Generator configurations - II

(table continued)

10delling	e		Cross-section							a	H
CM6	Ground stat	quasi-elastic	2p2h	resonance	shallow and deep inelastic	coherent π	diffractive π	ΔS=1 quasi-elastic	$\Delta S=1$ inelastic	Hadronizatio	FS
G18_10a G18_10b G18_10c G18_10d	LFG	NAV w/ dipole $F_A(Q^2)$	NSV	BS tuned (2020)	BY tuned (2020)	BS	Rein	Pais	ASAV (opt.) (ν only)	AGKY tuned (2020) AG	hA18 hN18 INCL G4B
G18_10i G18_10j G18_10k G18_10l	LFG	NAV w/ $F_A(Q^2)$ from z-exp	NSV	BS tuned (2020)	BY tuned (2020)	BS	Rein	Pais	ASAV (opt.) (ν only)	AGKY tuned (2020) AG	hA18 hN18 INCL G4B
G21_11a G21_11b G21_11c G21_11d	LFG	SuSAv2 w/ dipole $F_A(Q^2)$	SuSAv2	BS tuned (2020)	BY tuned (2020)	BS	Rein	Pais	ASAV (opt.) (ν only)	AGKY tuned (2020) AG	hA18 hN18 INCL G4B

- Recent model development enables an enormous variety of comprehensive configurations.
- Combinatorial explosion!

 In preparation for v4, we will construct and then tune, publish and support only a small number (<10) of configurations, based on strict criteria of physics motivation and performance against data.

zenie

High energy neutrino interactions

Complete theoretical description of high energy neutrino scattering and new tunes suitable for neutrino telescopes and the CERN FPF [38].

Several scattering mechanisms:

- DIS off nucleons at NLO level, incorporating sub-leading resonant effects due to neutrino interactions with the photon field of the nucleon.
- Coherent scattering off nuclei.
- Resonant scattering upon atomic electrons (Glashow scattering).

Structure functions are computed using the *APFEL* program [16].

• Small-x resummation through interface to *HELL* [20].

Include 3 calculations at NLO accuracy:

- BGR18 [17] (GHE19_00a),
- CMS11 [28] (GHE19_00b), and
- **GGHR20** [38] (GHE19_00d).

zenie

Low-energy neutrino interactions (\geq v3.2.0)

Comparison of recent CERvNS measurements from COHERENT [6] with GENIE predictions based on the model of Patton et al. [50].

- New versions of GENIE include a new CEvNS event generator
- The corresponding CEvNS cross-section calculation is based on the work of Patton et al. [50].
- The new CEvNS generator is intentionally omitted from the standard ME/HE comprehensive model configurations
- A new, dedicated LE configuration (GVLE18_01a) was setup, including
 - CEvNS
 - νe⁻
 - IBD
- Single, baseline tune (000_00)

Jenie

BSM models in GENIE - An overview

Substantial effort to implement & deploy **GENIE BSM generators**. GENIE now also a lead provider of BSM simulations for intensity frontier experiments.

Available in GENIE:

- Nucleon Decay
- $n \bar{n}$ Oscillations
- Boosted Dark Matter (upgraded in v3.2.0)
- Dark Neutrinos (new in v3.2.0)
- Heavy Neutral Leptons (new in v3.4.0) [51]

- BSM searches form an important science pillar of many neutrino experiments.
- Standard neutrino interactions are a background to BSM searches.
- Important to simulate BSM and neutrino interactions in a common framework (for example, using common nuclear and intranuclear hadron transport models).

zenie

Heavy Neutral Lepton generator (\geq v3.4.0)

NLs are heavy neutrino eigenstates that could be produced in decays of hadrons in neutrino beams (long lifetimes $c\tau \sim O(100 \text{ m})$) GENIE implementation by John-Komninos Plows and Xianguo Lu [51]

- Implementing effective field theory by P. Coloma et al. [26] (caveat: below kaon mass threshold)
- Detailed treatment of massive neutrino kinematics
- Simplified "2-to-2" treatment of angular momentum effects following J.-M. Levy [48]

- Generic runtime control of HNL physics parameters via single xml config-file
- Interfaced with dk2nu-like flux tuples + ROOT geometry
- Accurate vertex positioning + arrival-time calculations

Jenie

GENIE global analysis

Since \sim 2017, developing a analyses of relevant scattering data.

Essential task, as empirical approaches often augment incomplete theory.

• Goals: **Parameter estimation**, **addressing double counting** issues inherent in empirical model construction, improve extrapolations in kinematic regions of limited model validity, model **uncertainty quantification**.

Tremendous analysis infrastructure:

- Extensive **curated data archives** (neutrino, electron, hadron)
- Associated data/MC comparison tools, emulating experimental conditions, cuts
- Computationally-efficient brute force scans, adapting tools from the LHC
 - Beyond reweighting constraints!
- Tools enabling massive parallelization.

Recent published GENIE analyses:

- Non-resonance bkg tuning, PRD 104 (2021) 7, 072009
- Hadronization model tuning (focus on hadron multiplicities), PRD 105 (2022) 1, 012009
- Neutrino-nucleus CC0π tuning, PRD 106 (2022) 11, 112001

Novel new analyses in advanced stage - Goal: a joint, global analysis

yenie

GENIE non-resonance background tune

- Fit to CC inclusive, CCQE, CC1 π and CC2 π data for H/D.
- Adjust non-resonance parameters, while also floating QE, resonance and DIS parameters.
- Improved description of both inclusive and exclusive data.
- Significant changes wrt the historical tune in v2.
- Final tuning results included in v3.2.0 and published in [58] (note: preliminary results included in earlier versions differ!)

Genie

GENIE hadronization multiplicity tune

- First tune [57] of the AGKY [64] neutrino-induced hadronization model.
- Uses average multiplicity data on H and D.
- Tunes 13 non-reweightable parameters (see [57] or in the backup slides).
- Benchmark application, highlighting the capabilities of the GENIE global analysis.
- Improves high-W region and provides quantitative estimates of model parameter uncertainties.
- Many additional pieces of available data (see [64]).
 Plan to revisit and extend the tune in the near future.

/jenie

MiniBooNE $\nu_{\mu}CC0\pi$ data G18 10a 02 11b tune

G10a Tune

GENIE nuclear **CC0** π tune

- First nuclear cross-section tune in GENIE, published in [56]
- Considered QE, 2p2h, resonance and FSI parameters.
- Partial tunes to T2K, MINERvA, MB data Examined tensions.

• We now attempt to combine data from different experiments, as well as from both 0π and 1π topologies, with a narrow focus on TKI observables.

$M_A^{\rm QEL}({\rm GeV/c^2})$	1.02 ± 0.01	1.01 ± 0.01	1.00 ± 0.01	1.00 ± 0.02	1.00 ± 0.01	0.99 ± 0.01
$\omega_{\rm RPA}$	1.20 ± 0.03	1.14 ± 0.06	1.2 ± 0.2	0.9 ± 0.1	1.3 ± 0.2	0.75 ± 0.3
$\omega_{\rm NoRPA}$	0.05 ± 0.02	0.09 ± 0.05	-0.1 ± 0.1	0.2 ± 0.1	0.2 ± 0.2	0.09 ± 0.3
S_{RES}	0.85 ± 0.02	0.86 ± 0.05	0.84 ± 0.02	0.84 ± 0.03	0.84 ± 0.02	0.84 ± 0.02
S_N^{2p2h}	1.5 ± 0.4	2.3 ± 0.01	1.7 ± 0.3	1.2 ± 0.4	1.7 ± 0.5	0.33 ± 0.2
S^{2p2h}_{Δ}	0.7 ± 0.2	0.7 ± 0.3	(1.00)	2.1 ± 0.2	2.3 ± 0.2	0.5 ± 0.4
S_{PL}^{2p2h}	0.4 ± 0.1	0.4 ± 0.1	(1.00)	0.9 ± 0.2	0.4 ± 0.1	1.5 ± 0.4
χ^2	89/130	77/71	60/55	61/137	67/53	17/19

zenie

Beyond reweightability constraints

- We provided first reweight tools ${\sim}15$ yrs ago.
 - **Popular paradigm** adopted by many experiments and other neutrino generators.
 - Built deeply into experiment analysis chains.
- Traditional reweight has severe limitations.
 - Key modelling aspect are not reweightable (e.g in nuclear modelling or in hadronic simulations).
- Our tuning tools transcend these limitations
- GENIE leads the way quantifying uncertainty, testing the impact of new degrees of freedom.
 - Example: Our recent hadronization tuning paper [57] tuning 13 parameters w/o a reweighting equivalent.
- Experiments lack the infrastructure to fully exploit our tunes and uncertainty estimates.
- We're working to fully support our tunes within our reweight tools.
 - Traditional "reweight-like" interface.
 - Systematic response functions generated in our tuning campaigns hidden under the hood.
- Pre-requisite for GENIE v4. Active work by a strong team (JUNO/SBND contributions).

Jenie

Summary

• Substantial developments since the release of v3 in Oct 2018

• GENIE v4 on the horizon

- Req'd devel: DCC [53, 54], MAID [59], reweighting support for tunes.
- Will feature a novel but reduced/targeted set of ME physics configurations
- New tuning campaign and uncertainty evaluation for preferred configurations, including new analyses (TKI and FSI global fits)

Would like to thank all our users and the dozens of contributors, working with the core team. Your contributions are essential!

To find out more:

- Join our GENIE Slack channel (by invitation, or with a FNAL or CERN e-mail)
- Follow interactions (issues, pull requests, discussions) in our GitHub page
- Join our monthly User Forum
- See our recent papers in [7, 56–58]

Supplementary Slides

High-energy neutrino interactions (\geq v3.2.0) - 1

Complete theoretical description of HE neutrino scattering and new tunes suitable for neutrino telescopes and the CERN FPF [38]. Distinct comprehensive models, used for energies above 100 GeV.

• Planning to bridge with ME model in future.

Validated for neutrino energies up to 10^9 GeV!

Can be coupled with tools, such as NuPropEarth [38] or gSeaGen [4].

Includes several relevant scattering mechanisms:

- DIS off nucleons at NLO level
 - Incorporating **sub-leading resonant DIS effects** (due to neutrino interactions with the photon field of the nucleon)
- Coherent scattering off nuclei
- Resonant scattering upon atomic electrons (Glashow scattering)

jenie

High-energy neutrino interactions (\geq v3.2.0) - II

For DIS scattering off gluons and quarks, in the perturbative regime, the structure functions $F_i^{\nu N}$ factorise in terms of process-dependent coefficients $C_{i,a}^{\nu}$ and process-independent PDFs f_a^N as follows

$$F_i^{\nu N}(x,Q^2) = \sum_{a=g,q} \int_x^1 \frac{dz}{z} C_{i,a}^{\nu}(\frac{x}{z},Q^2) f_a^N(z,Q^2)$$

- The coefficients C^ν_{i,a} can be computed in perturbation theory as a power expansion in the strong coupling constant a_s.
- The DGLAP equations determine the evolution of PDFs.
- Option to account for the impact of small-x resummation (logarithmic enhancements arising from high-energy gluon emissions) of coefficient functions and PDF evolution.

Jenie

High-energy neutrino interactions (\geq v3.2.0) - III

Structure functions are computed using the APFEL program [16].

• Small-x resummation through interface to HELL [20].

The baseline calculation is BGR18 [17].

- All inputs at NLO accuracy.
- PDF sets from NNPDF3.1sx [8] global analysis of collider data.
- Incorporating (through PDF reweighting) the impact of LHCb D-meson production in pp collisions (small-x PDF constraints beyond the kinematic range of HERA data) [1–3].
- Using the FONLL scheme [36] to account for quark mass effects.
- Nuclear corrections computed using the EPPS16 nPDFs [33, 35].

The CMS11 [28] calculation is implemented for reference.

• Uses the the NLO HERA1.5 PDF set [27].

The GGHR20 [38] calculation is also implemented for reference.

jenie

High-energy neutrino interactions (\geq v3.2.0) - IV

Resonant interactions with the nucleon's photon field, can amount to up to a 3% correction of the total DIS cross-section, when the neutrino has enough energy to produce an on-shell W boson ($\sqrt{2M_NE_{\nu}} \ge M_W$).

The contribution to the cross-section taken into account [38] by convoluting the cross-section for the partonic process $\nu\gamma \rightarrow \ell W$, with the inelastic photon PDF of the nucleon

$$\sigma_{\nu N}(E_{\nu}) = \int dx \, \gamma_{inel}^N(x,\mu_F^2) \, \hat{\sigma}_{\nu \gamma}(x,\mu_F^2,E_{\nu})$$

Genie

High-energy neutrino interactions (\geq v3.2.0) - V

Comparison [38] of neutrino-nucleon interaction cross-sections:

- The original (NLO) BGR18 and CMS11 calculations are compared with their corresponding GENIE implementations
- Bands correspond to the PDF uncertainties

Genie

High-energy neutrino interactions (\geq v3.2.0) - VI

zenie

CEvNS and VLE tunes (\geq v3.2.0) - 1

- Added a new CEvNS event generator.
- The corresponding CEvNS cross-section calculation is based on the work of Patton et al. [50].
- In this model the differential CEvNS cross-section is given by

$$\frac{d\sigma}{dT} = \frac{G_F^2}{2\pi} M \left\{ 2 - \frac{2T}{E} + \left(\frac{T}{E}\right)^2 - \frac{MT}{E^2} \right\} \frac{Q_w^2}{4} F^2(Q^2)$$

where M is the nuclear mass, T is the kinetic energy of the nuclear recoil,

$$T = \frac{Q^2 E}{2EM + Q^2},$$

Genie

CEvNS and VLE tunes (\geq v3.2.0) - II

 ${\cal Q}_w$ is the weak charge,

$$Q_w = N - Z(1 - 4\sin^2\theta_w),$$

and ${\cal F}(Q^2)$ is the nuclear form factor

$$\begin{split} F(Q^2) &= \frac{1}{Q_w} \int \left(\rho_n(r) - (1 - 4sin^2 \theta_w) \rho_p(r) \right) \frac{sin(Qr)}{Qr} r^2 dr \Rightarrow \\ F(Q^2) &= \frac{N}{Q_w} \left(1 - \frac{Q^2}{3!} < R_n^2 > + \frac{Q^5}{5!} < R_n^4 > - \frac{Q^6}{7!} < R_n^6 > + \dots \right) \end{split}$$

where

$$\langle R_n^k \rangle = \frac{\int \rho_n(r) r^k d^3 r}{\int \rho_n(r) d^3 r}$$
Jenie

CEvNS and VLE tunes (\geq v3.2.0) - III

Calculation by Patton et al. [50] fully reproduced by GENIE implementation.

- The new CEvNS generator is omitted from the standard comprehensive model configurations
 - Large cross-section to nearly invisible channel
- A new, dedicated low-energy configuration (GVLE18_01a) was setup, including
 - CEvNS
 - νe^-
 - IBD
- Single, baseline tune (000_00)

Jenie

Updated BDM generator (\geq v3.2.0) - I

A native implementation of a **Boosted Dark Matter** (BDM) generator was available in GENIE 3.0.0.

A substantial upgrade of the GENIE BDM generator was deployed in GENIE 3.2.0, bringing it sync with the model described in [12]. The GENIE implementation was prepared by the original author (Josh Berger).

The newly deployed BDM code:

- allows a broader set of particle physics models, including both vector and axial couplings, as well as different isospin structures,
- as improved modeling of the elastic scattering process, including a pseudoscalar form factor,
- includes the simulation of scattering off electrons, and
- includes anti-dark matter scattering.

jenie

Updated BDM generator (\geq v3.2.0) - II

The GENIE BDM generator covers a broad class of models:

$$J^{\mu}_{Z',\psi} = \bar{\psi}\gamma^{\mu}(Q^{\psi}_L P_L + Q^{\psi}_R P_R)\psi$$

$$\mathcal{L}_{int} = g_{Z'} Z'_{\mu} J^{\mu}_{Z',\psi}$$

where $\psi = \chi, u, d, s, c, e$. The model is specified by charges Q_{LR}^{ψ} , the gauge coupling $g_{Z'}$ and the masses of the dark matter particle χ and of the mediator Z'.

enie

Updated BDM generator (\geq v3.2.0) - III

Example DUNE sensitivity study [13] using the GENIE BDM module.

Angular distribution of hadronic BDM signal wrt the direction of the Sun. The plot shows 10k event distributions for a DM particle with a mass of 10 GeV, for 3 different boost factors γ .

zenie

Dark Neutrino generator (\geq v3.2.0) - I

- Framework that provides an explanation to the long-standing excess of electronlike events in the MiniBooNE experiment at Fermilab [18]
- The model extends the SM Lagrangian including
 - A new massive "dark" neutrino that mixes with SM one

$$\nu_{\alpha} = \sum_{i=1}^{3} U_{\alpha i} \nu_i + U_{\alpha 4} N_4 \qquad \alpha = e, \mu, \tau, \mathcal{D}$$
(1)

- light dark neutral vector boson that couples with $\nu_{\mathcal{D}}$ and EM charge

$$\mathcal{L}_{\mathcal{D}} \supset g_{\mathcal{D}} Z^{\mu}_{\mathcal{D}} \bar{\nu}_{\mathcal{D}} \gamma_{\mu} \nu_{\mathcal{D}} + e \varepsilon Z^{\mu}_{\mathcal{D}} J^{em}_{\mu} \tag{2}$$

enie

Dark Neutrino generator (\geq v3.2.0) - II

- Once the heavy neutrino is produced it decays into
 - light neutrinos
 - e pair
 - μ pair if the mass is high enough
- Decay length and branching ratios are strongly dependent on the mixing parameters and masses
 - with the parameters from [18] it can be of the order of mm or cm
 - and mostly decay into e-pair
- The new flavour can have the equivalent of any NC interaction available in the SM

zenie

Dark Neutrino generator (\geq v3.2.0) - III

- The main contribution is from Coherent interaction
 - now implemented inside GENIE
 - further interactions will be implemented later
- Implementation based on the Engel form factors [34]
 - Later more sophisticated FF can be included
- The generator also takes care of the decay of the dark particles
 - Downstream code will not need upgrades

Visible energy for BNB-like beam

/jenie

Heavy Neutral Lepton generator upgrades

Possible to extend the functionality in a number of ways:

- More detailed treatment of polarisation incorporates state-of-the-art QM calculations with detailed HNL kinematics (a)
- Implementation of heavier HNL production and decay channels enables searches beyond kaon mass (b1, b2) and expands searches with τ-mixing (b3).
- Extension of Lagrangian model machinery to incorporate user input (c); a comprehensive model selection for HNL generation.

jenie

Upgraded hadron tensor tools (\geq v3.2.0) - 1

GENIE continued work to develop suitable new code interfaces to simplify inclusion of new theoretical calculations.

Several ideas, through comparative study of the requirements for implementing different types of 0-pion models:

- Valencia
- SuSA
- Short-time approximation
- CBF spectral function

A refactoring and generalisation of code to handle hadron tensors was a necessary ingredient towards improving 0-pion theory interfaces.

- Tech details in **GENIE docdb #137**.
- Old models migrated to new scheme.
- Physics unchanged.

Genie

New QE/MEC models: SuSAv2 (\geq v3.2.0)

New hadron tensor tool allowed quick implementation of the SuSAv2 model. Details are given in [32].

Genie

New QE/MEC models: QMC STA (> v3.2.0)

Similar tools underpin the GENIE implementation of the **Quantum Monte** Carlo Short-Time Approximation model. Details in [10].

zenie

Electron scattering improvements (\geq v3.0.0) - I

Renewed focus on GENIE electron mode. Details in [49]. Benchmarking of ν mode:

- Very similar interactions
- Nuclear effects practically identical
- Known electron beam energy

'zenie

Coherent single- γ production (\geq v3.2.2)

- NC photon emission reactions with heavy nuclei [61]
- At intermediate energies, dominated by the weak excitation of the $\Delta(1232)$ resonance and its subsequent decay into N γ
 - Contributions from other resonances:
 - The effect is < 10%
 - to be released in a later version
- The model takes into account
 - Pauli blocking
 - Fermi motion
 - in-medium Δ resonance broadening
- DeVries form factors for proton charge distributions [31]
- Model reliable only for $E_{\gamma} < 2 \, {\rm GeV}$ and for nuclei heavier than Carbon

Integrated cross sections for $\boldsymbol{\nu}$

(continuous lines) and $\bar{\nu}$ (dotted lines)

on different nuclei:

- ^{12}C blue ^{40}Ar - green ^{56}Fe - red
- $^{208}\mathrm{Pb}$ black

zenie

New 1 π models: MK (\geq v3.6.0) - I

Complete implementation of the MK model by the Dubna group.

- The model calculates $\frac{d\sigma}{dW dQ^2 d\cos\theta_\pi d\varphi_\pi}$ for CC and NC processes.
- Takes into account:
 - the interference between resonances,
 - non-resonant background (calculated according to [42]),
 - the interference between resonant and non-resonant background.
 - final lepton mass.
- For theoretical aspects, see Refs. [44, 45].
- Can be analytically integrated over φ_{π} which allows faster numerical integration.
- The model parameters such as resonance masses, widths, branching ratios and decay channels were updated according to PDG-2018 [55].

Jenie

New 1 π models: MK (\geq v3.6.0) - II

Kuzmin, Vadim Naumov)

jenie

Resonance pion decay updates (\geq v3.0.6) - 1

- Baryon resonance decay is not isotropic in Δ reference frame
 - The pion follows a distribution as function of θ*
- The previous version was bugged
 - The angles were calculated with respect to the LAB z direction
 - It should be w.r.t. \overrightarrow{q}
- We took the opportunity and we made refinements
 - Different angular distribution options informed by data
 - ANL [52]
 - early BNL [9]
 - late BNL [46, Figure 13]
 - Distributions depend on Q^2
 - Possible dependencies on ϕ^*

FIG. 2. Kinematics and coordinate systems for the scattering of polarized electrons from polarized nuclear targets.

1enie

Hadronization

Hadronization models are a key ingredient for predictions of **exclusive** hadronic multiparticle production.

It affects:

- E_{ν} reconstruction (detector response to hadronic showers)
- Efficiency / background estimation

 ν n neutrino interaction.

Conventional picture:

- Two correlated hadron jets (current and target fragments)
- Smooth transition through a central rapidity region
- At low W, the two fragmentation regions overlap

jenie

Hadronization model development in GENIE

GENIE AGKY Hadronization model [64] Further details in <u>this NuSTEC talk</u>

- Empirical model at W $< 2.3 \ \text{GeV}$
- PYTHIA at W > 3 GeV
 - home.thep.lu.se/Pythia/
- Linear transition in between

Hadronization is one of the current focal areas of development:

- Integrate PYTHIA8
- Improve GENIE/PYTHIA interface (gluon radiation)
- In-medium effects
- Relax strong x_F asymmetry at low W
- Non asymptotic forms of KNO scaling
- Address double-counting following introduction of $\Delta S{=}1~{\rm modes}$
- Parameter tuning
- Evaluation of model uncertainty
- Tools for propagating hadronization model uncertainty
- ...

zenie

Interface to PYTHIA8 (\geq v3.2.0) I

- Large-scale code refactoring completed.
- Changed of hadronization and decayer interfaces
 - Upgrade to event record visitors
 - Eliminated PYTHIA6-specific (but misunderstood as generic) ROOT objects (TMCParticle) from interfaces
- Interfaced to PYTHIA8 directly (not via ROOT)
- PYTHIA8 is a working PYTHIA6 alternative within AGKY
 - PYTHIA6/8 yield identical results
- PYTHIA8 not a full PYTHIA6 replacement yet
 - Particle decayers, charm hadronization, LEPTO (HEDIS) still support only PYTHIA6
 - Fully transition to PYTHIA8 in v3.4
 - Drop PYTHIA6 entirely in v4.0
- Still useful for exercising / testing new future mandatory dependency.

Jenie

Transition region tuning (\geq v3.2.0) - I

- Resonance production is described with the Rein-Sehgal or Bergher-Seghal models
- Non-resonant bkg. is described using the duality inspired model of Bodek-Yang
 - Bodek-Yang cross section extrapolated down to the inelastic threshold
 - GENIE low-mass hadronization model is used to decompose the inclusive cross section into exclusive cross sections
 - Strength includes, on average, the effect of the resonances

Tuning is needed to address double-counting with resonances

Using ν_{μ} / $\bar{\nu}_{\mu}$ CC data (~ 200 points) on H, H² targets for the following topologies:

- Inclusive
- 1 π production ($\nu_{\mu}n \rightarrow \mu^{-}n\pi^{+}$, $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$, $\nu_{\mu}n \rightarrow \mu^{-}p\pi^{0}$, $\bar{\nu}_{\mu}p \rightarrow \mu^{+}p\pi^{-}$)
- 2π production ($\nu_{\mu}p \rightarrow \mu^{-}n\pi^{+}\pi^{+}$, $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}\pi^{0}$, $\nu_{\mu}n \rightarrow \mu^{-}p\pi^{+}\pi^{-}$)
- Quasi-elastic (to constrain flux normalization)

Zenie

Transition region tuning (\geq v3.2.0) - II

- In the old tune, more emphasis was given on inclusive data
- Tensions exist between inclusive and exclusive data Known issues with the old tune, re-discovered many times:
 - One pion production was overpredicted
 - Underestimating two pion production

G00_00a default - ν_{μ} CC inclusive

G00_00a default - u_{μ} CC p $\pi^+\pi^-$

Genie

Transition region tuning (\geq v3.2.0) - III

Experiment	N_p	Energy [GeV]	Target	Cuts	Ref.
		$\nu_{\mu} + N \rightarrow \mu$	1 ⁻ X		
BNL 7FT	13	0.6-10	^{2}H		[42]
BEBC	3	10-50	$H^{-10}Ne$		[40]
FNAL	6	10-110	^{2}H		[72]
	5	100-110	H- ¹⁰ Ne		[45]
		$\bar{\nu}_{\mu} + N \rightarrow \mu$	1 ⁺ X		
BEBC	3	11-110	$^{1}H^{-10}Ne$		[28]
	1	10-50	¹ H- ¹⁰ Ne		[40]
	6	30 - 110	$^{1}H^{-10}Ne$		[29]
	1	10-110	¹ H- ¹⁰ Ne		[41]
BNL 7FT	1	1-4	^{1}H		[51]
FNAL	5	10-110	$^{2}H^{-10}Ne$		[47]
	7	10-80	$^{2}H^{-10}Ne$		[52]
		$\nu_{\mu}n \rightarrow \mu^{-}n$	ιπ ⁺		
ANL 12FT	5	0.3-2	¹ H and ² H		[65]
ANL 12FT,ReAna	7	0.3-3	^{2}H		[66]
BNL 7FT,ReAna	11	0.1-4	^{2}H		[66]
		$\nu_{\mu}p \rightarrow \mu^{-}p$	rπ ⁺		
ANL 12FT,ReAna	8	0-1.6	^{2}H		[66]
BNL 7FT,ReAna	7	0-7	^{2}H		[66]
BEBC	7	1-30	^{1}H	W < 1.4 GeV	[68]
	6	5 - 100	^{2}H	W < 2 GeV	[56]
	5	10-80	^{1}H	W < 2 GeV	[70]
FNAL	3	10-30	^{1}H	W < 1.4 GeV	[75]
		$\nu_{\mu}n \rightarrow \mu^{-}p$	2π ⁰		
ANL 12FT	5	0.2-2	¹ H and ² H		[65]
ANL 12FT,ReAna	7	0.2-2	^{2}H		[66]
BNL 7FT,ReAna	10	0.4-3	^{2}H		[66]
		$\nu_{\mu}p \rightarrow \mu^{-}n\pi$	+π ⁺		
ANL 12FT	5	1-6	^{2}H		[73]
		$\nu_{\mu}p \rightarrow \mu^{-}p\pi$	r ⁺ π ⁰		
ANL 12FT	5	1-6	^{2}H		[73]
		$\nu_{\mu}n \rightarrow \mu^{-}p\pi$	·+π ⁻		
ANL 12FT	5	8-6	^{2}H		[73]
BNL 7FT	10	0-20	^{2}H		[33]
		$\bar{\nu}_{\mu}p \rightarrow \mu^{+}p$	m		
FNAL	1	5-70	¹ H	W < 1.9 GeV	[71]
		$\nu_{\mu} + n \rightarrow \mu^{-}$	+ p		
ANL 12FT	7	0-2	² H		[55]
	8	0-2	¹ H and ² H		[27]
BNL 7FT	4	0.2-2	^{2}H		[60]
BEBC	5	20-40	^{2}H		[56]
ENAL	å	0.50	211		[57]

The SIS region is tuned against ν_{μ} / $\bar{\nu}_{\mu}$ CC data on ^{2}H targets for the following topologies:

- Inclusive
- One pion production
 - $\nu_{\mu}n \rightarrow \mu^{-}n\pi^{+}$
 - $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}$
 - $\nu_{\mu}n \rightarrow \mu^{-}p\pi^{0}$
 - $\bar{\nu}_{\mu}p \rightarrow \mu^+ p\pi^-$
- Two pion production
 - $\nu_{\mu}p \rightarrow \mu^{-}n\pi^{+}\pi^{+}$
 - $\nu_{\mu}p \rightarrow \mu^{-}p\pi^{+}\pi^{0}$
 - $\nu_{\mu}n \rightarrow \mu^{-}p\pi^{+}\pi^{-}$
- Quasi-elastic data †
- † To constrain flux normalization

Genie

Transition region tuning (\geq v3.2.0) - IV

- 1 RES parameters
 - M_A^{RES}
 - RES-XSecScale
- 2 SIS parameters
 - W_{cut} to determine the end of the SIS region
 - *R_m* parameters for proton and neutron, multiplicity 2 and 3
- 3 DIS parameters
 - DIS-XSecScale
- 4 QEL parameters - M_A^{QEL}
- 5 Flux nuisance parameters

These parameters are common for both G18_01a and G18_02a CMC

Zenie

Transition region tuning (\geq v3.2.0) - V

- The datasets from the same experiment are not independent ⇒ same flux, analysis methodology,...
- The data releases do not contain any correlation
- By adding an extra nuisance parameters per experiment we take into account the correlation
 → ν and ν
 beams have different nuisance parameters
- They are scaling factors applied to the prediction
- Each nuisance parameter has a Gaussian prior centered on 1 with $\sigma=15\%$
- To further constrain the fluxes, we included quasi-elastic data as well as M_A^{QE} in the fit

Jenie

Transition region tuning (\geq v3.2.0) - VI

Parameter	Default	G18_01a(/b)	G18_02a(/b)
Wcut	1.7	1.94	1.81
M_A^{QE}	0.99	1.00 ± 0.01	1.00 ± 0.013
M_A^{RES}	1.12	1.09 ± 0.02	1.09 ± 0.014
$R_{\nu p}^{CC1\pi}$	0.1	0.06 ± 0.03	0.008
$R_{\nu p}^{CC2\pi}$	1	1.1 ± 0.2	0.94 ± 0.075
$R_{\nu n}^{CC1\pi}$	0.3	0.14 ± 0.03	0.03 ± 0.010
$R_{\nu n}^{CC2\pi}$	1	2.8 ± 0.4	2.3 ± 0.12
S_{RES}	1	0.89 ± 0.04	0.84 ± 0.028
S_{DIS}	1.032	1.03 ± 0.02	1.06 ± 0.01
$\chi^2/157$ DoF		1.84	1.64

 \Rightarrow The correlation between the tuned parameters is in the backup slides

Priors applied

$$\begin{split} M_A^{QE} &= 1.014 \pm 0.014 \; \text{GeV/c}^2 \text{, [ArXiv:0708.1946]} \\ M_A^{RES} &= 1.12 \pm 0.03 \; \text{GeV/c}^2 \text{, [ArXiv:0606184]} \end{split}$$

 ${\sf DIS}\text{-}{\sf XSecScale}{=}\ 1\pm0.05 \rightarrow {\sf Motivated}$ by DIS high energy cross section values

Zenie

Transition region tuning (\geq v3.2.0) - VII

Global tune with respect to ν_{μ} CC Inclusive datasets:

- The cross section is reduced at low energies to match the low cross section of pion production
- Pion production is better described without ruining the inclusive cross section

<mark>G</mark>enie

Transition region tuning (\geq v3.2.0) - VIII

Retune brings an improved description of both inclusive and exclusive data.

<mark>G</mark>enie

Transition region tuning (\geq v3.2.0) - IX

New data-driven constraints on generator uncertainty.

Our goal is that with GENIE v4, *ReWeight* will **support error propagation for all GENIE tunes** (including the intrinsically non-reweightable parameters included in tunes).

Genie

Hadronization retune (\geq v3.2.0) - 1

Several measurements on H and H^2 of hadronic multiplicities. See [57] for a summary.

Corresponding GENIE predictions affected by many non-reweightable parameters:

Parameter	GENIE parameter name	<i>2010</i> GENIE	Allowed range	2021 Global Fit	2021 ² H Fit			
Low- W empirical model								
$\alpha_{\nu p}$	KNO-Alpha-vp	0.40	[-1.0, 2.0]	1.1 ± 0.3	1.2 ± 0.4			
$\alpha_{\nu n}$	KNO-Alpha-vn	-0.20	[-1.0, 2.0]	$1.75^{+0.14}_{-0.11}$	-0.58 ± 0.07			
$\alpha_{\bar{\nu}p}$	KNO-Alpha-vbp	0.02	[-1.0, 2.0]	$1.32_{-0.14}^{+0.16}$	1.9 ± 0.08			
$\alpha_{\bar{\nu}n}$	KNO-Alpha-vbn	0.80	[-1.0, 2.0]	1.11 ± 0.09	1.07 ± 0.3			
$\beta_{\nu p}$	KNO-Beta-vp	1.42	[0.0, 2.5]	0.79 ± 0.15	0.9 ± 0.3			
$\beta_{\nu n}$	KNO-Beta-vn	1.42	[0.0, 2.5]	0.5 ± 0.1	1.9 ± 0.3			
$\beta_{\bar{\nu}p}$	KNO-Beta-vbp	1.28	[0.0, 2.5]	0.8 ± 0.1	0.3 ± 0.1			
$\beta_{\bar{\nu}n}$	KNO-Beta-vbn	0.95	[0.0, 2.5]	$0.88\substack{+0.09\\-0.08}$	0.9 ± 0.2			
PYTHIA								
$P_{s\bar{s}}$	PYTHIA-SSBarSuppression	0.30	[0.0, 1.0]	0.27 ± 0.04	0.29 ± 0.05			
$\langle p_{\perp}^2 \rangle [\text{GeV}^2/c^2]$	PYTHIA-GaussianPt2	0.44	[0.1, 0.7]	0.46 ± 0.05	0.43 ± 0.04			
E_{CutOff} [GeV]	PYTHIA-RemainingEnergyCutoff	0.20	[0.0, 1.0]	0.30 ± 0.04	0.24 ± 0.05			
Lund a	PYTHIA-Lunda	0.30	[0.0, 2.0]	1.53 ± 0.13	1.85 ± 0.15			
Lund $b [c^4/GeV^2]$	PYTHIA-Lundb	0.58	[0.0, 1.5]	1.16 ± 0.09	1.0 ± 0.2			
			$\chi^2 =$	87.9/62 DoF	29.5/32 DoF			

Genie

Hadronization retune (\geq v3.2.0) - II

Improved description of data and first data-driven uncertainties and correlations.

For details see <u>arXiv:2106.05884[hep-ph]</u> (Accepted for publication in Phys.Rev.D.)

Only a first step towards more comprehensive $\nu\text{-induced}$ hadronization development and tuning work.

zenie

Hadronization retune (\geq v3.2.0) - 1

Decided to address:

- $\langle n_{ch} \rangle$ underestimation at the PYTHIA region
- No explicit GENIE tune
- Lack of data-driven constraints to quantify the generator uncertainty

 $< n_{ch} >$ is controlled by a large set of non-reweightable parameters. Test-driving aspects of our tuning machinery, relevant for several future tunes.

Jenie

Hadronization retune (\geq v3.2.0) - II

In the empirical GENIE model, the averaged charged multiplicity follows an empirical logarithmic law:

$$\langle n_{ch} \rangle = \alpha_{ch} + \beta_{ch} \cdot \ln\left(\frac{W^2}{GeV^2/c^4}\right) + \beta_{ch}^{\prime\prime} \cdot \ln\left(\frac{Q^2}{GeV^2/c^2}\right)$$

- α_{ch} and β_{ch} are free parameters and depend on the type of interaction
- In GENIE, α_{ch} and β_{ch} are those measured by the FNAL 12FT and BEBC 7FT bubble chambers.

Parameter	νp	ν n	$\bar{\nu}$ p	$ar{ u}$ n
α_{ch}	0.40	-0.20	0.02	0.80
β_{ch}	1.42	1.42	1.28	0.95

Jenie

Hadronization retune (\geq v3.2.0) - III

At high W, GENIE is based on the Lund string fragmentation framework (PYTHIA).

- Tuned to high energy pp and ep experiments.
- NOMAD (NUX) PYTHIA6 tuning was adopted in 2007.
- Some PYTHIA6 defaults were restored in later GENIE re-tune (2010).
- Not previously tuned with neutrino data

	PYTHIA	NUX	GENIE
	default	2001	2010 re-tune
ss production suppression	0.30	0.21	0.30
$< p_T^2 > (GeV^2)$	0.36	0.44	0.44
Non-gaussian p_T tail parameterization	0.01	0.01	0.01
Fragmentation cut-off energy (GeV)	0.80	0.20	0.20

Hadronization retune (\geq v3.2.0) - IV

Experiment	$\mathbf{N}_{\mathbf{p}}$	$W^2 [\text{GeV}^2/c^4]$] Cuts	Syst.	In Fit	Ref.
		ν_{μ}	$+ p \rightarrow \mu^- X^{++}$			
FNAL 15FT (1983)	14	[1, 225]	$\begin{array}{c} p^{\mu} \geq 5 \ \mathrm{GeV/c} \\ p_{T}^{\tau} \geq 1 \ \mathrm{GeV/c} \\ p_{L}^{\tau h} \geq 5 \ \mathrm{GeV/c} \\ p_{L}^{\tau h} \geq 5 \ \mathrm{GeV/c} \\ p_{p} \leq 340 \ \mathrm{MeV/c^{2}} \\ W \geq 1.5 \ \mathrm{GeV/c^{2}} \\ E_{\nu}^{\tau cco} \geq 10 \ \mathrm{GeV} \end{array}$	10%	$W^2 > 4 \text{GeV}^2/c^4$	[35]
BEBC (1989)	6	[4, 196]	$p^{\mu} \ge 4 \text{ GeV/c}$ $p_p \le 300 \text{ MeV/c}$	included	×	56
		ν,	$+ n \rightarrow \mu^- X^+$			
FNAL 15FT (1983)	14	[1, 225]	$\begin{array}{l} p_{\mu}^{T} \geq 1 ~ \mathrm{GeV/c} \\ p_{L}^{Ch} \geq 5 ~ \mathrm{GeV/c} \\ E_{\nu}^{roco} \geq 10 \mathrm{GeV} \\ p_{p} \leq 340 ~ \mathrm{MeV/c^{2}} \end{array}$	10%	~	[35]
BEBC (1984)	8	[6, 112]	$p^{\mu} \ge 4 \text{ GeV/c}$ $Q^2 \ge 1 (\text{GeV/c})^2$ $W^2 \ge 5 \text{ GeV}^2/c^4$ $p_p \le 300 \text{ MeV/c}^2$	\sim stat	~	57
BEBC (1989)	6	[4, 196]	$p^{\mu} \ge \frac{\delta_{cut}}{4 \text{ GeV/c}}$ $p_p \le 300 \text{ MeV/c}$ $W \ge 5 \text{GeV/c}^2$	included	×	[56]
		P,	$, + p \rightarrow \mu^+ X^0$			
BEBC (1982)	8	[5,75]	$p^{\mu} \ge 4 \text{ GeV/c}$ $p_p \le 300 \text{ MeV/c}$	\sim stat	~	36
BEBC (1989)	6	[4, 196]	$\begin{array}{c} p^{\mu} \geq \overset{\mathcal{E}_{eut}}{4 \ \mathrm{GeV/c}} \\ p_{p} \leq 300 \ \mathrm{MeV/c} \end{array}$	included	×	[56]
$\bar{\nu}_{\mu} + n \rightarrow \mu^+ X^-$						
BEBC (1982)	8	[1.5, 56]	$p^{\mu} \ge 4$ $p_p \le 300 \text{ MeV/c}$	\sim stat	~	[36]
BEBC (1989)	6	[4, 196]	$p^{\mu} \ge 4$ $p_p \le 300 \text{ MeV/c}$	included	×	56

Parameter	GENIE parameter name Nominal value Allowed range				
	Low-W empirical model				
$\alpha_{\nu p}$	KNO-Alpha-vp	0.40	[-1.0, 2.0]		
$\alpha_{\nu n}$	KNO-Alpha-vn	-0.20	[-1.0, 2.0]		
$\alpha_{\bar{\nu}p}$	KNO-Alpha-vbp	0.02	[-1.0, 2.0]		
$\alpha_{\sigma n}$	KNO-Alpha-vbn	0.80	[-1.0, 2.0]		
$\beta_{\nu p}$	KNO-Beta-vp	1.42	[0.0, 2.5]		
$\beta_{\nu n}$	KNO-Beta-vn	1.42	[0.0, 2.5]		
$\beta_{\bar{\nu}p}$	KNO-Beta-vbp	1.28	[0.0, 2.5]		
$\beta_{\nu n}$	KNO-Beta-vbn	0.95	[0.0, 2.5]		
	PYTHIA				
$P_{s\bar{s}}$	PYTHIA-SSBarSuppression	0.30	[0.0, 1.0]		
$P_{< p_T^2 >}$ [GeV ²]	PYTHIA-GaussianPt2	0.44	[0.1,0.7]		
PEcutoff [GeV]	PYTHIA-RemainingEnergyCutof:	f 0.20	[0.0 ,1.0]		
Lund a	PYTHIA-Lunda	0.30	[0.0,2.0]		
Lund b $[GeV/c^2]$	PYTHIA-Lundb	0.58	[0.0,1.5]		

Large set of neutrino-induced hadron

shower characteristic data were brought into the first hadronization tune focussing explicitly on $< n_{ch} >$. A large set of non-reweightable parameters was allowed to float.

Genie

Hadronization retune (\geq v3.2.0) - V

Genie

Hadronization retune (\geq v3.2.0) - VI

- Desired increase $\langle n_{ch} \rangle$ at the PYTHIA region
- Full error matrix for several key modelling parameters

Genie

Improved description of both inclusive and exclusive data.

Final tuning results included in v3.2.0.

For details: <u>arXiv:2104.09179[hep-ph]</u> (Published in Phys.Rev.D 104 (2021) 7, 072009)

7enie

Nuclear tuning - I

- We develop new tunes based on nuclear cross-section data
 - All our models to date not explicitly tuned against neutrino-nucleus data
- Based on GENIE's G18_10a_02_11b comprehensive model
- Our analysis includes **11 CC0** π **datasets** (1000 data points) from MicroBooNE, T2K ND280, MINERvA and MicroBooNE.
- Tune includes several degrees of freedom for interactions on nuclei:
 - QE: several parameters controlling the axial form factor and RPA corrections
 - MEC: several parameters affecting strength and shape in $q_0, |\vec{q}|$ space
 - RES: a scaling parameter
 - FSI: parameters controlling pion absorption and mean free path.
- Performing joint analyses and analyses of individual datasets
- We're aiming to publish first results in March, and include the tuning results in future v3.2 revisions.
- Longer-term goal is to perform similar analyses using all comprehensive models in GENIE.

Genie

Nuclear tuning - II

Example comparison of MINERvA data with our nominal (black) and tuned (red) model from one of our partial fits.

Details in a comprehensive new paper to be published this spring.

zenie

Event Library Generator Interface (\geq v3.2.0) - I

- Ability to read from an external library of cross-sections and pre-computed final particle kinematics
 - Possibly computed using an alternative neutrino generator
- GENIE will use:
 - the appropriate cross-section from the file
 - kinematics from the library entry with the closest-matching energy
- $\Rightarrow\,$ this will then reproduce the physics of the external generator
 - Making use of the flux and geometry handling of GENIE
 - Within the limits of the library statistics

Event Library Generator Interface (\geq v3.2.0) - II

- xsec and kinetmatics to be provided for every combination of
 - Target, Interaction, ν flavour
- ROOT file input
- For each combination directory there will be
 - TGraph for xsection vs energy
 - TTree for kinematics
- TTree with the following branches
 - *E_ν*
 - int prod_id
 - nparts
 - array of pdgs
 - array of Final state momenta

Jenie

References I

- R Aaij et al. "Prompt charm production in pp collisions at sqrt(s)=7 TeV". In: Nucl. Phys. B 871 (2013), pp. 1–20. DOI: 10.1016/j.nuclphysb.2013.02.010. arXiv: 1302.2864 [hep-ex].
- [2] Roel Aaij et al. "Measurements of prompt charm production cross-sections in *pp* collisions at √s = 13 TeV". In: *JHEP* 03 (2016). [Erratum: JHEP 09, 013 (2016), Erratum: JHEP 05, 074 (2017)], p. 159. DOI: 10.1007/JHEP03(2016)159. arXiv: 1510.01707 [hep-ex].
- [3] Roel Aaij et al. "Measurements of prompt charm production cross-sections in pp collisions at √s = 5 TeV". In: JHEP 06 (2017), p. 147. DOI: 10.1007/JHEP06(2017)147. arXiv: 1610.02230 [hep-ex].
- [4] S. Aiello et al. "gSeaGen: The KM3NeT GENIE-based code for neutrino telescopes". In: Comput. Phys. Commun. 256 (2020), p. 107477. DOI: 10.1016/j.cpc.2020.107477. arXiv: 2003.14040 [astro-ph.IM].
- [5] A. Airapetian et al. "Hadronization in semi-inclusive deep-inelastic scattering on nuclei". In: Nucl.Phys. B780 (2007), pp. 1–27. DOI: 10.1016/j.nuclphysb.2007.06.004. arXiv: 0704.3270 [hep-ex].

/jenie

References II

- [6] D. Akimov et al. "First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon". In: Phys. Rev. Lett. 126.1 (2021), p. 012002. DOI: 10.1103/PhysRevLett.126.012002. arXiv: 2003.10630 [nucl-ex].
- Luis Alvarez-Ruso et al. "Recent highlights from GENIE v3". In: (June 2021).
 DOI: 10.1140/epjs/s11734-021-00295-7. arXiv: 2106.09381 [hep-ph].
- [8] Richard D. Ball et al. "Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data". In: *Eur. Phys. J. C* 78.4 (2018), p. 321. DOI: 10.1140/epjc/s10052-018-5774-4. arXiv: 1710.05935 [hep-ph].
- S. J. Barish et al. "Study of neutrino interactions in hydrogen and deuterium. II. Inelastic charged-current reactions". In: *Phys. Rev. D* 19 (9 May 1979), pp. 2521-2542. DOI: 10.1103/PhysRevD.19.2521. URL: https://link.aps.org/doi/10.1103/PhysRevD.19.2521.
- [10] Joshua L. Barrow et al. "Quasielastic Electromagnetic Scattering Cross Sections and World Data Comparisons in the GENIE Monte Carlo Event Generator". In: (Oct. 2020). arXiv: 2010.04154 [nucl-th].
- [11] J. Benlliure et al. "Calculated nuclide production yields in relativistic collisions of fissile nuclei". In: Nucl. Phys. A 628 (1998), pp. 458–478. DOI: 10.1016/S0375-9474(97)00607-6.

Jenie

References III

- [12] Joshua Berger. "A Module for Boosted Dark Matter Event Generation in GENIE". In: (Dec. 2018). arXiv: 1812.05616 [hep-ph].
- [13] Joshua Berger et al. "Prospects for Detecting Boosted Dark Matter in DUNE through Hadronic Interactions". In: (Dec. 2019). arXiv: 1912.05558 [hep-ph].
- [14] H.W. Bertini. "Intranuclear-cascade calculation of the secondary nucleon spectra from nucleon-nucleus interactions in the energy range 340 to 2900 mev and comparisons with experiment". In: *Phys. Rev.* 188 (1969), pp. 1711–1730. DOI: 10.1103/PhysRev.188.1711.
- [15] H.W. Bertini and M.P. Guthrie. "News item results from medium-energy intranuclear-cascade calculation". In: Nucl. Phys. A 169 (1971), pp. 670–672. DOI: 10.1016/0375-9474(71)90710-X.
- [16] Valerio Bertone, Stefano Carrazza, and Juan Rojo. "APFEL: A PDF Evolution Library with QED corrections". In: Comput. Phys. Commun. 185 (2014), pp. 1647–1668. DOI: 10.1016/j.cpc.2014.03.007. arXiv: 1310.1394 [hep-ph].
- [17] Valerio Bertone, Rhorry Gauld, and Juan Rojo. "Neutrino Telescopes as QCD Microscopes". In: JHEP 01 (2019), p. 217. DOI: 10.1007/JHEP01(2019)217. arXiv: 1808.02034 [hep-ph].

/jenie

References IV

- [18] Enrico Bertuzzo et al. "Dark Neutrino Portal to Explain MiniBooNE Excess". In: *Phys. Rev. Lett.* 121 (24 Dec. 2018), p. 241801. DOI: 10.1103/PhysRevLett.121.241801. URL: https://link.aps.org/doi/10.1103/PhysRevLett.121.241801.
- [19] Niels Bohr and John Archibald Wheeler. "The Mechanism of nuclear fission". In: Phys. Rev. 56 (1939), pp. 426–450. DOI: 10.1103/PhysRev.56.426.
- [20] Marco Bonvini. "Small-x phenomenology at the LHC and beyond: HELL 3.0 and the case of the Higgs cross section". In: Eur. Phys. J. C 78.10 (2018), p. 834. DOI: 10.1140/epjc/s10052-018-6315-x. arXiv: 1805.08785 [hep-ph].
- [21] P. E. Bosted and M. E. Christy. "Empirical fit to inelastic electron-deuteron and electron-neutron resonance region transverse cross-sections". In: *Phys. Rev. C* 77 (2008), p. 065206. DOI: 10.1103/PhysRevC.77.065206. arXiv: 0711.0159 [hep-ph].
- [22] A. Boudard et al. "Intranuclear cascade model for a comprehensive description of spallation reaction data". In: *Phys. Rev. C* 66 (2002), p. 044615. DOI: 10.1103/PhysRevC.66.044615.

Jenie

References V

- [23] Alessandro Candido et al. "Neutrino Structure Functions from GeV to EeV Energies". In: JHEP 05 (2023), p. 149. DOI: 10.1007/JHEP05(2023)149. arXiv: 2302.08527 [hep-ph].
- [24] Jie Cheng et al. "Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors: I. model predictions". In: *Phys. Rev. D* 103.5 (2021), p. 053001. DOI: 10.1103/PhysRevD.103.053001. arXiv: 2008.04633 [hep-ph].
- [25] M. E. Christy and Peter E. Bosted. "Empirical fit to precision inclusive electron-proton cross- sections in the resonance region". In: *Phys. Rev. C* 81 (2010), p. 055213. DOI: 10.1103/PhysRevC.81.055213. arXiv: 0712.3731 [hep-ph].
- [26] Pilar Coloma et al. "GeV-scale neutrinos: interactions with mesons and DUNE sensitivity". In: Eur. Phys. J. C 81.1 (2021), p. 78. DOI: 10.1140/epjc/s10052-021-08861-y. arXiv: 2007.03701 [hep-ph].
- [27] Amanda Cooper-Sarkar. "Proton Structure from HERA to LHC". In: 40th International Symposium on Multiparticle Dynamics. Dec. 2010. arXiv: 1012.1438 [hep-ph].

/jenie

References VI

- [28] Amanda Cooper-Sarkar, Philipp Mertsch, and Subir Sarkar. "The high energy neutrino cross-section in the Standard Model and its uncertainty". In: JHEP 08 (2011), p. 042. DOI: 10.1007/JHEP08(2011)042. arXiv: 1106.3723 [hep-ph].
- [29] J. Cugnon. "PROTON NUCLEUS INTERACTION AT HIGH-ENERGY". In: Nucl. Phys. A 462 (1987), pp. 751–780. DOI: 10.1016/0375-9474(87)90575-6.
- [30] J. Cugnon, C. Volant, and S. Vuillier. "Improved intranuclear cascade model for nucleon - nucleus interactions". In: Nucl. Phys. A 620 (1997), pp. 475–509. DOI: 10.1016/S0375-9474(97)00186-3.
- H. De Vries, C.W. De Jager, and C. De Vries. "Nuclear charge-density-distribution parameters from elastic electron scattering". In: Atomic Data and Nuclear Data Tables 36.3 (1987), pp. 495–536. ISSN: 0092-640X. DOI: https://doi.org/10.1016/0092-640X(87)90013-1. URL: http://www.sciencedirect.com/science/article/pii/0092640X87900131.
- [32] S. Dolan, G.D. Megias, and S. Bolognesi. "Implementation of the SuSAv2-meson exchange current 1p1h and 2p2h models in GENIE and analysis of nuclear effects in T2K measurements". In: *Phys. Rev. D* 101.3 (2020), p. 033003. DOI: 10.1103/PhysRevD.101.033003. arXiv: 1905.08556 [hep-ex].

/jenie

References VII

- [33] Sayipjamal Dulat et al. "New parton distribution functions from a global analysis of quantum chromodynamics". In: *Phys. Rev. D* 93.3 (2016), p. 033006. DOI: 10.1103/PhysRevD.93.033006. arXiv: 1506.07443 [hep-ph].
- [34] J. Engel. "Nuclear form factors for the scattering of weakly interacting massive particles". In: *Physics Letters B* 264.1 (1991), pp. 114–119. ISSN: 0370-2693. DOI: https://doi.org/10.1016/0370-2693(91)90712-Y. URL: http://www.sciencedirect.com/science/article/pii/037026939190712Y.
- [35] Kari J. Eskola et al. "EPPS16: Nuclear parton distributions with LHC data". In: Eur. Phys. J. C 77.3 (2017), p. 163. DOI: 10.1140/epjc/s10052-017-4725-9. arXiv: 1612.05741 [hep-ph].
- [36] Stefano Forte et al. "Heavy quarks in deep-inelastic scattering". In: Nucl. Phys. B 834 (2010), pp. 116–162. DOI: 10.1016/j.nuclphysb.2010.03.014. arXiv: 1001.2312 [hep-ph].
- [37] J.J. Gaimard and K.H. Schmidt. "A Reexamination of the abrasion ablation model for the description of the nuclear fragmentation reaction". In: *Nucl. Phys.* A 531 (1991), pp. 709–745. DOI: 10.1016/0375-9474(91)90748-U.

/jenie

References VIII

- [38] Alfonso Garcia et al. "Complete predictions for high-energy neutrino propagation in matter". In: JCAP 09 (2020), p. 025. DOI: 10.1088/1475-7516/2020/09/025. arXiv: 2004.04756 [hep-ph].
- [39] J.J. Griffin. "Statistical Model of Intermediate Structure". In: Phys. Rev. Lett. 17 (1966), pp. 478–481. DOI: 10.1103/PhysRevLett.17.478.
- [40] M.P. Guthrie, R.G. Alsmiller, and H.W. Bertini. "Calculation of the capture of negative pions in light elements and comparison with experiments pertaining to cancer radiotherapy". In: *Nucl. Instrum. Meth.* 66 (1968), pp. 29–36. DOI: 10.1016/0029-554X(68)90054-2.
- [41] Aatos Heikkinen, Nikita Stepanov, and Johannes Peter Wellisch. "Bertini intranuclear cascade implementation in GEANT4". In: eConf C0303241 (2003), MOMT008. arXiv: nucl-th/0306008.
- [42] E. Hernandez, J. Nieves, and M. Valverde. "Weak Pion Production off the Nucleon". In: *Phys. Rev. D* 76 (2007), p. 033005. DOI: 10.1103/PhysRevD.76.033005. arXiv: hep-ph/0701149.
- [43] A.R. Junghans et al. "Projectile-fragment yields as a probe for the collective enhancement in the nuclear level density". In: Nucl. Phys. A 629 (1998), pp. 635–655. DOI: 10.1016/S0375-9474(98)00658-7.

Jenie

References IX

- [44] M. Kabirnezhad. "Improvement of Single Pion Production for T2K experiment simulation tools(update)". URL: <ncbj.gov.pl/sites/default/files/m.kabirnezhad-thesis_final_0.pdf>. PhD thesis. National Center for Nuclear Research, Otwock-Świerk. 2020.
- [45] M. Kabirnezhad. "Single pion production in neutrino-nucleon Interactions". In: Phys. Rev. D 97 (2018). [Erratum: arXiv:1711.02403], p. 013002. DOI: 10.1103/PhysRevD.97.013002. arXiv: 1711.02403 [hep-ph].
- [46] T. Kitagaki et al. "Charged-current exclusive pion production in neutrino-deuterium interactions". In: *Phys. Rev. D* 34 (9 Nov. 1986), pp. 2554-2565. DOI: 10.1103/PhysRevD.34.2554. URL: https://link.aps.org/doi/10.1103/PhysRevD.34.2554.
- [47] A. Kling et al., eds. Advanced Monte Carlo for radiation physics, particle transport simulation and applications. Proceedings, Conference, MC2000, Lisbon, Portugal, October 23-26, 2000. Berlin: Springer, Nov. 2001. DOI: 10.1007/978-3-642-18211-2.
- [48] Jean-Michel Levy. "Rates and differential distributions in heavy neutral leptons production and decays". In: (May 2018). arXiv: 1805.06419 [hep-ph].

/jenie

References X

- [49] A. Papadopolou et al. "Inclusive Electron Scattering And The GENIE Neutrino Event Generator". In: (Sept. 2020). arXiv: 2009.07228 [nucl-th].
- [50] Kelly Patton et al. "Neutrino-nucleus coherent scattering as a probe of neutron density distributions". In: *Phys. Rev. C* 86 (2012), p. 024612. DOI: 10.1103/PhysRevC.86.024612. arXiv: 1207.0693 [nucl-th].
- [51] Komninos-John Plows and Xianguo Lu. "Modeling heavy neutral leptons in accelerator beamlines". In: *Phys. Rev. D* 107.5 (2023), p. 055003. DOI: 10.1103/PhysRevD.107.055003. arXiv: 2211.10210 [hep-ph].
- [52] G. M. Radecky et al. "Study of single-pion production by weak charged currents in low-energy νd interactions". In: Phys. Rev. D 25 (5 Mar. 1982), pp. 1161-1173. DOI: 10.1103/PhysRevD.25.1161. URL: https://link.aps.org/doi/10.1103/PhysRevD.25.1161.
- [53] T. Sato and T. S. H. Lee. "Meson exchange model for pi N scattering and gamma N —> pi N reaction". In: Phys. Rev. C 54 (1996), pp. 2660–2684. DOI: 10.1103/PhysRevC.54.2660. arXiv: nucl-th/9606009.
- [54] Toru Sato, D. Uno, and T. S. H. Lee. "Dynamical model of weak pion production reactions". In: *Phys. Rev. C* 67 (2003), p. 065201. DOI: 10.1103/PhysRevC.67.065201. arXiv: nucl-th/0303050.

Jenie

References XI

- [55] M. Tanabashi et al. "Review of Particle Physics". In: Phys. Rev. D 98 (3 Aug. 2018), p. 030001. DOI: 10.1103/PhysRevD.98.030001. URL: https://link.aps.org/doi/10.1103/PhysRevD.98.030001.
- [56] Julia Tena-Vidal et al. "Neutrino-nucleus CC0π cross-section tuning in GENIE v3". In: *Phys. Rev. D* 106.11 (2022), p. 112001. DOI: 10.1103/PhysRevD.106.112001. arXiv: 2206.11050 [hep-ph].
- [57] Júlia Tena-Vidal et al. "Hadronization model tuning in genie v3". In: Phys. Rev. D 105.1 (2022), p. 012009. DOI: 10.1103/PhysRevD.105.012009. arXiv: 2106.05884 [hep-ph].
- [58] Júlia Tena-Vidal et al. "Neutrino-nucleon cross-section model tuning in GENIE v3". In: Phys. Rev. D 104.7 (2021), p. 072009. DOI: 10.1103/PhysRevD.104.072009. arXiv: 2104.09179 [hep-ph].
- [59] L. Tiator et al. "Electromagnetic Excitation of Nucleon Resonances". In: Eur. Phys. J. ST 198 (2011), pp. 141–170. DOI: 10.1140/epjst/e2011-01488-9. arXiv: 1109.6745 [nucl-th].

<mark>G</mark>enie

References XII

- [60] Yu.E. Titarenko et al. "Experimental and computer simulation study of radionuclide production in heavy materials irradiated by intermediate-energy protons". In: 3rd Topical Meeting on Nuclear Applications of Accelerator Technology (AccApp 99). Aug. 1999. arXiv: nucl-ex/9908012.
- [61] E. Wang, L. Alvarez-Ruso, and J. Nieves. "Photon emission in neutral-current interactions at intermediate energies". In: *Phys. Rev. C* 89 (1 Jan. 2014), p. 015503. DOI: 10.1103/PhysRevC.89.015503. URL: https://link.aps.org/doi/10.1103/PhysRevC.89.015503.
- [62] V. Weisskopf. "Statistics and Nuclear Reactions!". In: Phys. Rev. 52 (1937), pp. 295–303. DOI: 10.1103/PhysRev.52.295.
- [63] V.F. Weisskopf and D.H. Ewing. "On the Yield of Nuclear Reactions with Heavy Elements". In: Phys. Rev. 57.6 (1940), p. 472. DOI: 10.1103/PhysRev.57.472.
- [64] T. Yang et al. "A Hadronization Model for Few-GeV Neutrino Interactions". In: Eur. Phys. J. C 63 (2009), pp. 1–10. DOI: 10.1140/epjc/s10052-009-1094-z. arXiv: 0904.4043 [hep-ph].