Neutrino Interaction Capabilities of SBND

Andrew Furmanski NuFact 2023, Seoul, South Korea

- "Short Baseline Near Detector"
- Near Detector for SBN program
 - With world-leading eV-scale sterile neutrino sensitivity
- Single-detector physics program of its own

- "Short Baseline Near Detector"
- Near Detector for SBN program
 - With world-leading eV-scale sterile neutrino sensitivity
- Single-detector physics program of its own

- "Short Baseline Near Detector"
- Near Detector for SBN program
 - With world-leading eV-scale sterile neutrino sensitivity
- Single-detector physics program of its own

- "Short Baseline Near Detector"
- Near Detector for SBN program
 - With world-leading eV-scale sterile neutrino sensitivity
- Single-detector physics program of its own

Few-mm spatial resolution leads to low particle tracking thresholds and excellent momentum/direction resolution

High-coverage photon detection allows for improved calorimetry, lower thresholds, and better background rejection!

Almost 4π coverage CRT suppresses high cosmic rate at surface

Booster Neutrino Beam

- 8 GeV proton beam from Fermilab Booster
- Berylium target
- Single focusing horn
- 50m decay pipe
- 600MeV peak, 800MeV mean, tail up to ~4-5 GeV

SBND Event Rates

Process		No.	
		Events	
	$ u_{\mu} Events \ (By \ Final \ State \ Topology) $		
CC Inclusive		5,212,690	
CC 0 π	$ u_{\mu}N ightarrow \mu + Np$	$3,\!551,\!830$	
	$\cdot \ \nu_{\mu}N \to \mu + 0p$	$793,\!153$	
	$\cdot \ \nu_{\mu}N o \mu + 1p$	2,027,830	20x MicroBooNE stats
	$\cdot \ \nu_{\mu}N \to \mu + 2p$	359,496	SUX MICTOBOUNE Stats
	$\cdot \ u_{\mu}N o \mu + \geq 3p$	371,347	5M y CC per year
CC 1 π^{\pm}	$\nu_{\mu}N \to \mu + \text{nucleons} + 1\pi^{\pm}$	1,161,610	2M NC per year
$CC \ge 2\pi^{\pm}$	$\nu_{\mu}N \to \mu + \text{nucleons} + \ge 2\pi^{\pm}$	97,929	12ky CC per year
$CC \ge 1\pi^0$	$\nu_{\mu}N \to \mu + \text{nucleons} + \ge 1\pi^0$	497,963	12k ve CC per year
NC Inclusive		$1,\!988,\!110$	
NC 0 π	$\nu_{\mu}N \rightarrow \text{nucleons}$	$1,\!371,\!070$	
NC 1 π^{\pm}	$\nu_{\mu}N \to \text{nucleons} + 1\pi^{\pm}$	260,924	
$NC \ge 2\pi^{\pm}$	$\nu_{\mu}N \to \text{nucleons} + \ge 2\pi^{\pm}$	31,940	
$NC \ge 1\pi^0$	$\nu_{\mu}N \rightarrow \text{nucleons} + \geq 1\pi^0$	358,443	

SBND Event Rates

Sufficient statistics for differential measurements of all topologies

Even electron neutrino multi-pion events (SIS/DIS region)

SBND Event Rates

Sufficient statistics for differential measurements of all topologies

Even electron neutrino multi-pion events (SIS/DIS region)

Expected Performance

SBND-PRISM

SBND-PRISM

SBND Kinematic Coverage

- 95% of DUNE phase space covered
- Extremely high statistics

April 2023 – installation

Andrew Furmanski University of Minnesota

June 2023 – first CRT wall installed

July 2023 – top cap welded in place

Reducing Uncertainties

- Dominant uncertainty is expected to be the flux
- Campaign underway to reduce these uncertainties:
 - v-e scattering (in-situ constraint)
 - O(500) events expected in 3 years: <10% stat. uncertainty
 - New hadron production measurements (ex-situ constraint)

What's Next?

- Argon fill starts soon!
- Cold commissioning, and CRT installation in late 2023 / early 2024
- Initial Physics Run planned for spring 2024
- After that, one neutrino every six seconds!

Conclusion

- SBND will collect the world's largest dataset of neutrinoargon interactions
 - Within the first month of operations!
- High-granularity TPC with an advanced light collection system
 - Will produce extremely precise measurements
- PRISM effect in a single detector
 - Neutrino energy dependence
- First neutrinos expected next year!

감사합니다 !

