The NEUT Generator: Status and Plans

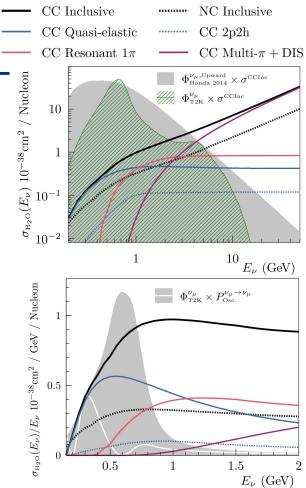
Luke Pickering 25/08/23 NuFact 2023 – Seoul

NEUT Developers: Y. Hayato, C. Wret, C. Bronner, S. Abe + many contributors

Science and Technology Facilities Council

Supported by ROYAL URF\R1\211661 SOCIETY

What Is NEUT?


- Primarily a Neutrino–Nucleus interaction generator:
 - Simulates important primary processes for ~100 MeV to few-TeV neutrinos
 - Interactions with nuclear targets from Hydrogen to Lead
 - Hadron cascade for propagating hadrons out of the nuclear medium

What Is NEUT?

Eur. Phys. J. Spec. Top. 230, 4469-4481 (2021)

- Primarily a Neutrino–Nucleus interaction generator:
 - Simulates important primary processes for ~100 MeV to few-TeV neutrinos
 - Interactions with nuclear targets from Hydrogen to Lead
 - Hadron cascade for propagating hadrons out of the nuclear medium
- Maintained 'in house' for use on T2K and SK:
 - Development targets the needs of the long baseline oscillation and cross-section programmes
 - Sub-to-few GeV energy region
 - Hydrocarbon and water targets

History

 Originally developed to predict neutrino-induced background rate for Kamiokande nucleon decay measurements.

	****	***************************************			
		SUBROUTINE RNAZI(C,S)			
		(Purpose)			
		Give cosine and sine of random direction			
		(Input)			
		NONE			
11					
12		(Output)			
13		C : COSINE OF RANDOM DIRECTION			
14		S : SINE OF RANDOM DIRECTION			
15					
		(Creation Date and Author)			
17		1978.09.08 ; S.Yamada, A.Sato			
18		1995.02.03 ; K. KANEYUKI FOR S.K.			
19		RANAZI -> RNAZI			
21	****	**			

Science and Technology Facilities Council

The NEUT Generator: Status and Plans

History

 Originally developed to predict neutrino-induced background rate for Kamiokande nucleon decay measurements.

1 *****				
3 SUBROL	UTINE RNAZI(C,S)			
6 * (Purpo	(Purpose)			
7 * Give	Give cosine and sine of random direction			
9 * (Inpu [.]	t) .			
10 * NONI				
11 *				
12 * (Outpu	ut)			
13 * C	: COSINE OF RANDOM DIRECTION			
14 * S	: SINE OF RANDOM DIRECTION			
15 *				
16 * (<mark>crea</mark>	tion Date and Author)			
17 * 1978	8.09.08 ; S.Yamada, A.Sato			
18 *	5.02.02 ; K. KANEVUKT FOR S.K.			
19 *	RANAZI -> RNAZI			
21 *******	*****			

Science and Technology Facilities Council

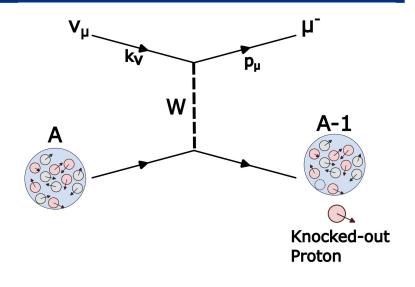
The NEUT Generator: Status and Plans

History

- Originally developed to predict neutrino-induced background rate for Kamiokande nucleon decay measurements.
- Has since been used for all SK and T2K long baseline oscillation results and the majority of T2K cross-section measurements.
 - Including Nobel and Breakthrough prize-winning measurements!
- The source code has historically not been public, but is available upon request.

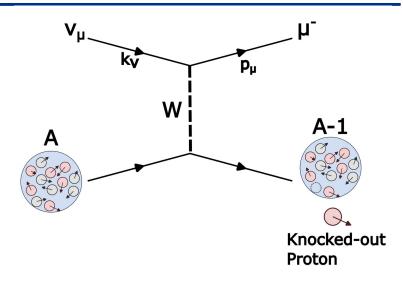
1		*****	****
			INE RNAZI(C,S)
		300K0011	
		(Purpose	
			cosine and sine of random direction
		GIVE C	
		(Toput)	
9 10		(Input) NONE	
10		NUNE	
12		(0++)	
		(Output)	
13		C S	: COSINE OF RANDOM DIRECTION
14			: SINE OF RANDOM DIRECTION
15		10	Data and Authors)
16			on Date and Author)
17			09.08 ; S.Yamada, A.Sato
18		1995.0	02.03 ; K. KANEYUKI FOR S.K.
19			RANAZI -> RNAZI
20			
21	**	*****	*****
		Creation Dat	
38 39		1983.??.??	M.NAKAHATA N.SATO FOR TAU
39 40		1987.08.?? 1988.08.31	T.KAJITA DATA UPDATE
		1988.09.06	T.KAJITA R1314 IS ADDED
		1988.09.19	T.KAJITA DX/DY WAS CHANGED BY THAT OF N.SATO'S
			WHICH INCLUDE LEPTON MASS TERM AND SMALL
		1988.10.05	TERMS T.KAJITA SIGMA(NC)/SIGMA(CC) RATIOS AT HIGH ENERGIES
		1900.10.05	J.E.KIM ET AL., REV.MOD.PHYS.53(1981)211
		1989.07.21	K.KANEYUKI NEU-TAU C.C. CROSS SECTION WAS UPDATED SAME
			AS NEU-E,NEU-MU
49 50			NEU-TAU N.C. CROSS SECTION => SAME AS NEU-E,NEU-MU
		1998.03.02	M.Shiozawa invariant mass threshold was changed due
			to new improved Rein-Sehgal model.
		1998.09.??	J.Kameda New Calculation based on New Structure
			function GRV94 DIS
		2006.08.04	Consider Nu_tau cross section G.Mitsuka Cross section is culculated after loading
			cross section table
		2007.11.05	G.Mitsuka support target nucleus besides 160
59		2007.11.10	T.Tanaka add upmu mode
60 61		2007.12.05	G.Mitsuka Maximum neutrno energy is extended to 100TeV even if not upmu mode
		2008.11.17	R.Tacik calculate inump and inumpn for each event
		2016.03.08	C.Bronner Put back the possibility to use a given input proton fraction
64			inump and inumpn are computed from number of nucleons only if
65 66		2020.12.02	the input fraction is <0 or >1 C.Bronner Cross-section for new BY model
67		2020.12.02	C. DIONNEL CLOSS-SECTION FOL NEW DI MODEL

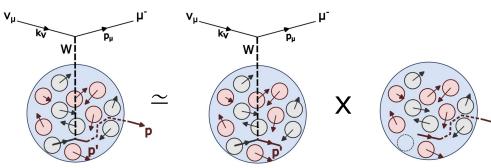
L. Pickering


6

Model Components

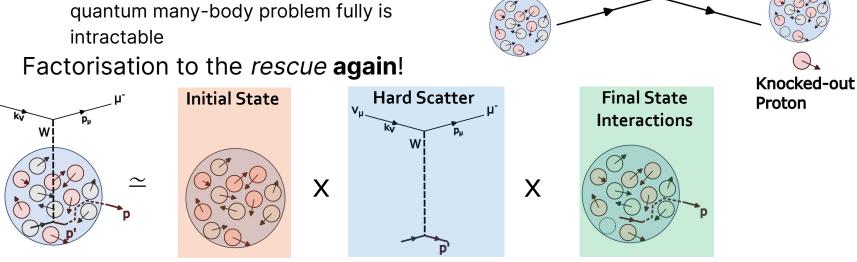
Science and Technology Facilities Council


- In the few GeV region, nuclear effects have a significant impact on cross-section predictions
 - But solving the neutrino–nucleus quantum many-body problem fully is intractable



Science and Technology Facilities Council

- In the few GeV region, nuclear effects have a significant impact on cross-section predictions
 - But solving the neutrino–nucleus quantum many-body problem fully is intractable
- Factorisation to the *rescue*!



Science and Technology Facilities Council

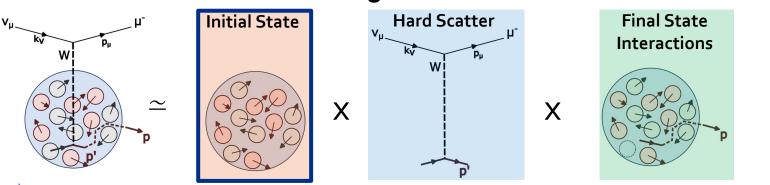
- In the few GeV region, nuclear effects have a significant impact on cross-section predictions
 - But solving the neutrino-nucleus Ο quantum many-body problem fully is intractable

kν

W

Рu

Science and Technology **Facilities Council**


The NEUT Generator: Status and Plans

L. Pickering 10

A-1

- In the few GeV region, nuclear effects have a significant impact on cross-section predictions
 - But solving the neutrino–nucleus quantum many-body problem fully is intractable

• Factorisation to the rescue again!

Science and Technology Facilities Council

The NEUT Generator: Status and Plans

kv

W

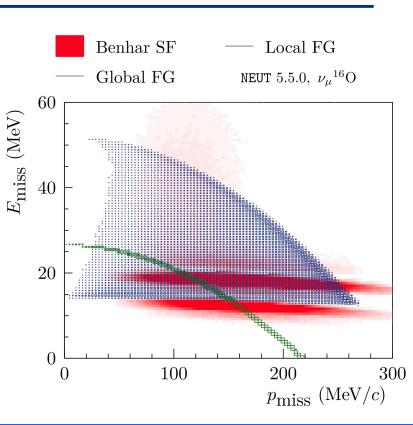
L. Pickering 11

A-1

Knocked-out

Proton

The Initial State

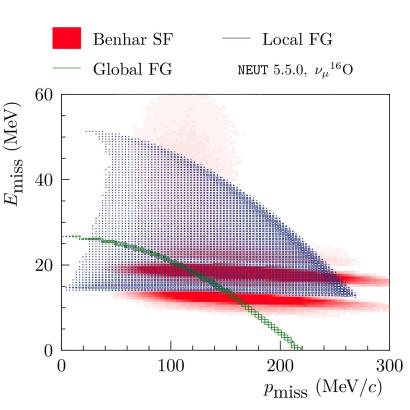

- The details of the initial state are critical for predicting few-GeV interactions correctly
 - Bound nucleons are in Fermi motion
 - Struck nucleons are off mass shell

Science and Technology Facilities Council

The Initial State

- The details of the initial state are critical for predicting few-GeV interactions correctly
 - Bound nucleons are in Fermi motion
 - Struck nucleons are off mass shell
- Usually characterised by Spectral Functions tuned to predict observed 'missing energy and momentum' in electron scattering.

Science and

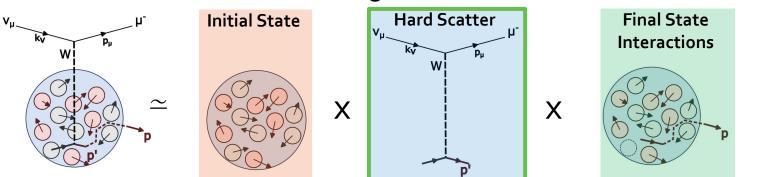

Technology

Facilities Council

The NEUT Generator: Status and Plans

The Initial State

- The details of the initial state are critical for predicting few-GeV interactions correctly
 - Bound nucleons are in Fermi motion
 - Struck nucleons are off mass shell
- Usually characterised by Spectral Functions tuned to predict observed 'missing energy a momentum' in electron scattering.
- NEUT can simulate interactions with FG nuclear models on a wide range of target nuclei
- NEUT can also use the Benhar SF for Quasi Elastic interactions with C12, O16, and Fe56



Science and Technology Facilities Council

The NEUT Generator: Status and Plans

- In the few GeV region, nuclear effects have a significant impact on cross-section predictions
 - But solving the neutrino–nucleus quantum many-body problem fully is intractable

• Factorisation to the rescue again!

Science and Technology Facilities Council

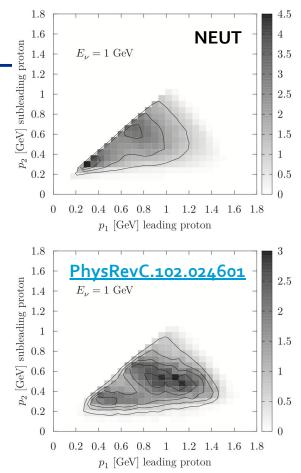
The NEUT Generator: Status and Plans

kv

W

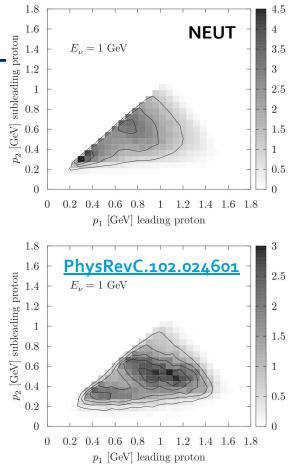
L. Pickering 15

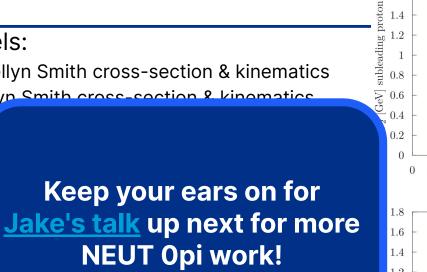
A-1

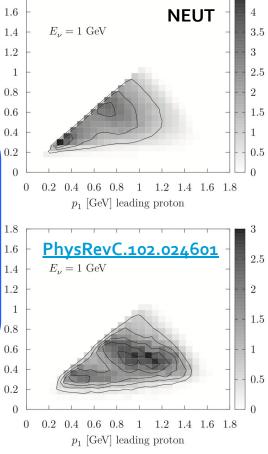

Knocked-out

Proton

- Inclusive CCQE Models:
 - Smith-Moniz RFG w/Llewellyn Smith cross-section & kinematics
 - Benhar et al. SF w/Llewellyn Smith cross-section & kinematics
 - Nieves et al. 1p1h (Valencia) w/Bourguille et al. removal energy
 - Nucleon Form Factors:
 - Vector: Dipole, BBA05, BBBA07
 - Axial: Dipole, 3-component, Z-expansion


- Inclusive CCQE Models:
 - Smith-Moniz RFG w/Llewellyn Smith cross-section & kinematics
 - Benhar et al. SF w/Llewellyn Smith cross-section & kinematics
 - Nieves et al. 1p1h (Valencia) w/Bourguille et al. removal energy
 - Nucleon Form Factors:
 - Vector: Dipole, BBA05, BBBA07
 - Axial: Dipole, 3-component, Z-expansion
- Inclusive 2p2h Model: Nieves et al. 2p2h (Valencia)
- w/egalitarian hadron kinematics model and Bourguille *et al.* removal energy
- Breaks second factorisation as interaction is inherently multi-body

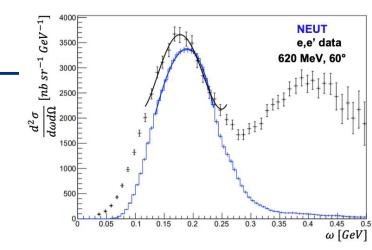

The NEUT Generator: Status and Plans


- Inclusive CCQE Models:
 - Smith-Moniz RFG w/Llewellyn Smith cross-section & kinematics
 - Benhar et al. SF w/Llewellyn Smith cross-section & kinematics
 - Nieves et al. 1p1h (Valencia) w/Bourguille et al. removal energy
 - Nucleon Form Factors:
 - Vector: Dipole, BBA05, BBBA07
 - Axial: Dipole, 3-component, Z-expansion
- Inclusive 2p2h Model: Nieves et al. 2p2h (Valencia)
- w/egalitarian hadron kinematics model and Bourguille *et al.* removal energy
- $\circ~$ Breaks second factorisation as interaction is inherently multi-body
- 2010's NEUT development focussed on 0Pi channels
 - Significant improvements needed for HK/DUNE

- Inclusive CCQE Models:
 - Smith-Moniz RFG w/Llewellyn Smith cross-section & kinematics Ο
 - Benhar et al. SF w/Llewellvn Smith cross-section & kinematics Ο
 - Nieves et al. 1p1h (Valen Ο
 - **Nucleon Form Factors:** Ο
 - Vector: Dipole, BBA
 - Axial: Dipole, 3-con
- Inclusive 2p2h Mod
- w/egalitarian hadron kine Ο energy
- Breaks second factorisati Ο
- 2010's NEUT development focussed on OPi channels
 - Significant improvements needed for HK/DUNE Ο

1.8

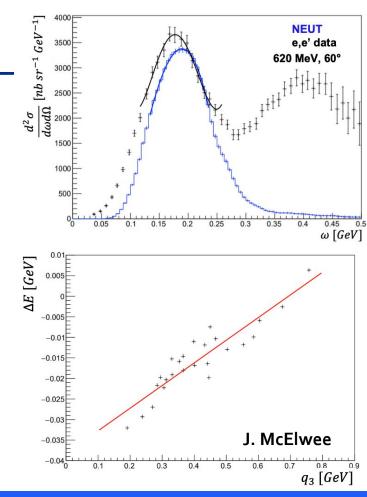
GeV


 p_2

Science and Technology **Facilities Council**

The NEUT Generator: Status and Plans

Electron Scattering


- New capability to run an e-like mode in NEUT
- Based on NCQE cross-section:
 - modified form factors and couplings
 - coulomb corrections to initial and final state energies

Electron Scattering

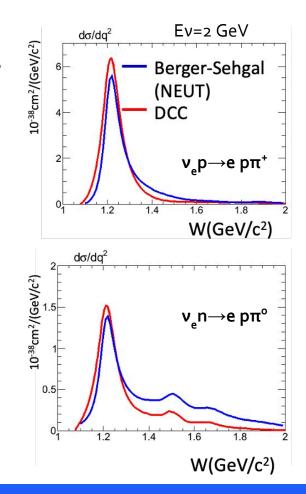
- New capability to run an e-like mode in NEUT
- Based on NCQE cross-section:
 - modified form factors and couplings
 - coulomb corrections to initial and final state energies
- Can be used to benchmark nuclear response implementation:
 - As expected from earlier work, the QE peak position is not correctly predicted by factorized SF implementation.
 - Shift of predicted to measured QE peak position shows clear dependence on interaction kinematics...
 - The second factorisation is wrong again.
 - But, observed shift ~matches predictions from RMF!

Science and Technology Facilities Council

The NEUT Generator: Status and Plans

- Rein-Sehgal model: w/Berger-Sehgal lepton mass effects
 - All RS resonances contribute coherently
 - Graczyk–Sobczyk form factors
 - Isospin ½ non-resonant background included incoherently
 - Single Etas, Omegas, and Gamma production is also implemented

- Rein-Sehgal model: w/Berger-Sehgal lepton mass effects
 - All RS resonances contribute coherently
 - Graczyk–Sobczyk form factors
 - Isospin ½ non-resonant background included incoherently
 - Single Etas, Omegas, and Gamma production is also implemented
- MK2018 implementation:
 - Key improvement: Non-resonant channels contribute coherently
 - Significantly improved model on the way, watch this space!

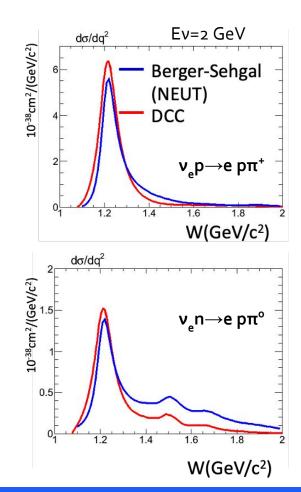

- Rein-Sehgal model: w/Berger-Sehgal lepton mass effects
 - All RS resonances contribute coherently
 - Graczyk–Sobczyk form factors
 - Isospin ½ non-resonant background included incoherently
 - Single Etas, Omegas, and Gamma production is also implemented
- MK2018 implementation:

Science and

Technology

Facilities Council

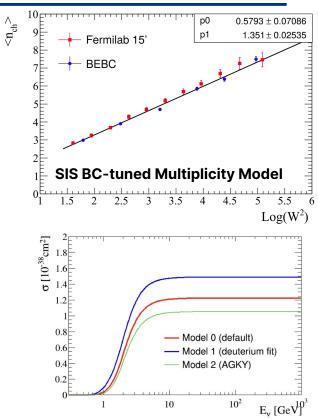
- Key improvement: Non-resonant channels contribute coherently
- Significantly improved model on the way, watch this space!
- DCC 1Pi [PRD 92, 074024 (2015)]:
 - State-of-the-art 1Pi model
 - Inclusive predictions implemented in NEUT



The NEUT Generator: Status and Plans

- Rein-Sehgal model: w/Berger-Sehgal lepton mass effects
 - All RS resonances contribute coherently
 - Graczyk–Sobczyk form factors
 - Isospin ½ non-resonant background included incoherently
 - Single Etas, Omegas, and Gamma production is also implemented
- MK2018 implementation:
 - Key improvement: Non-resonant channels contribute coherently
 - Significantly improved model on the way, watch this space!
- DCC 1Pi [PRD 92, 074024 (2015)]:
 - State-of-the-art 1Pi model
 - Inclusive predictions recently implemented in NEUT
- Coherent 1Pi: Rein-Sehgal and Berger-Sehgal
- Diffractive 1Pi: Rein Model

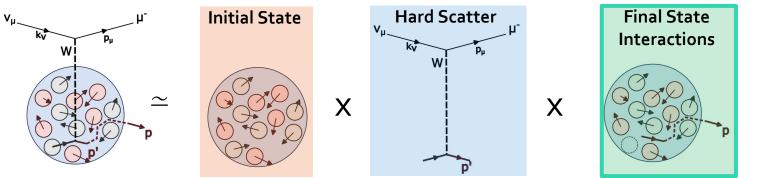
The NEUT Generator: Status and Plans


L. Pickering

25

Shallow & Deep Inelastic Scattering

NEUT SIS+DIS Model:


- GRV98 with Bodek Yang low Q2 modifications
 - Updated to 2108.09240v2 with improved tuning and new uncertainty estimation
 - Many new model improvements/fixes, <u>C Bronner</u>
- Pythia/JETSET 5.72 fragmentation
- SIS: W < 2
 - Must produce >= 2 pions to remove double-counting with SPP Processes
 - Custom charged-hadron multiplicity model with multiple options: Legacy, BC-tuned, AGKY
- DIS: W > 2
 - Full Pythia event generation

- In the few GeV region, nuclear effects have a significant impact on cross-section predictions
 - But solving the neutrino–nucleus quantum many-body problem fully is intractable

• Factorisation to the rescue again!

Knocked-out Proton

A-1

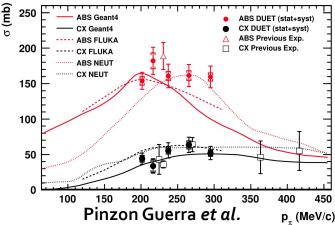
kv

W

Science and Technology Facilities Council

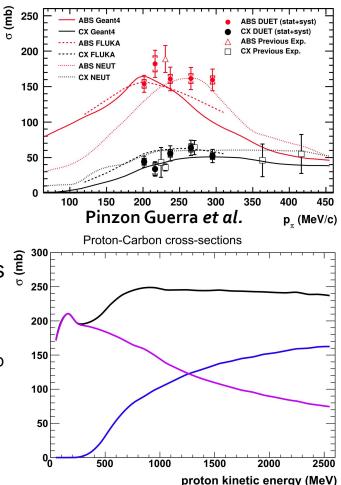
The NEUT Generator: Status and Plans

Cascade


- Hadrons produced in the Hard Scatter must be transported out of the nuclear medium before being considered observable.
 - Hadron kinematics, particle species, and multiplicity can change through interactions

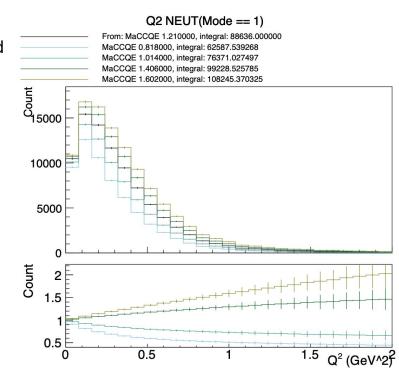
Science and Technology Facilities Council

Cascade


- Hadrons produced in the Hard Scatter must be transported out of the nuclear medium before being considered observable.
 - Hadron kinematics, particle species, and multiplicity can chang through interactions
- In NEUT, hadrons are stepped out the nucleus via a semi-classical Metropolis cascade which implements interactions of nucleons, pions, kaons, etas, and omegas
 - Pion processes: Quasi-Elastic, Charge-exchange, Absorption, or pion production tuned to a variety of thin-target data

Cascade

- Hadrons produced in the Hard Scatter must be transported out of the nuclear medium before being considered observable.
 - Hadron kinematics, particle species, and multiplicity can chang through interactions
- In NEUT, hadrons are stepped out the nucleus via a semi-classical Metropolis cascade which implements ¹/₂ interactions of nucleons, pions, kaons, etas, and omegas
 - Pion processes: Quasi-Elastic, Charge-exchange, Absorption, o pion production tuned to a variety of thin-target data
 - The nucleon cascade follows Bertini *et al.* for MECC-7
- Woods-Saxon nucleon density with LFG spectral function

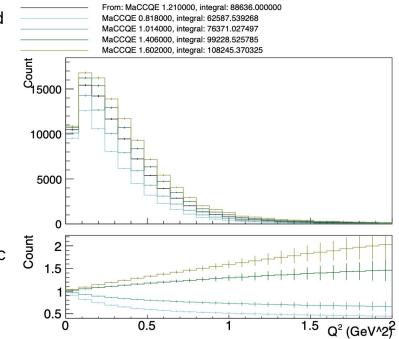


Science and Technology Facilities Council

The NEUT Generator: Status and Plans

Tools Worth Mentioning

- NEUT ReWeight:
 - Calculate the relative probability of an already-generated event under some model variation
 - A critical tool for uncertainty propagation, but doesn't work for all model variations – complement with approximate techniques
 - Implemented for QE and Res1Pi form factors
 - Implemented for Pion and Nucleon cascade for modest variations of in-medium scattering probabilities

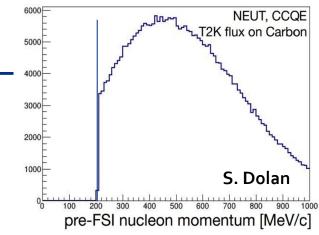

Science and Technology Facilities Council

The NEUT Generator: Status and Plans

Tools Worth Mentioning

- NEUT ReWeight:
 - Calculate the relative probability of an already-generated event under some model variation
 - A critical tool for uncertainty propagation, but doesn't work for all model variations – complement with approximate techniques
 - Implemented for QE and Res1Pi form factors
 - Implemented for Pion and Nucleon cascade for modest variations of in-medium scattering probabilities
- GEANT interface:
 - Can use the NEUT hadron transport model as an inelastic model in GEANT4
 - Enables correlation of Final State Interaction (intra-nuclear) and Secondary Interaction (in-detector) models

Q2 NEUT(Mode == 1)


Science and Technology Facilities Council

The NEUT Generator: Status and Plans

Known Limitations

- Nuclear models are inconsistent between models or steps in the factorisation:
 - Benhar *et al.* SF can be used for CCQE but no other modes
 - LFG used for FSI nuclear description
- Benhar *et al.* SF Pauli blocking uses simple, RFG-like approach
- Nuclear effects in single pion production are largely ignored
- Nuclear transparency has no effect on inclusive cross-section
- Between us... there are others

based on the density and momentum predictions from an LFG model. Such an inconsistent model is sometimes affectionately referred to as a Franken-model, after the fictional scientist and his Gothic horror implementation. For single meson production, nuclear effects

Plans

Science and Technology Facilities Council

Future: NEUT 6

- Development has begun on NEUT6 Targeted at HK and final T2K analyses:
 - Significant reorganization of code-base
 - Improved, modern build system
 - Removed dependence on an external CERNLIB2005
 - New TOML-based configuration file
 - Modern C/Fortran interop
 - Automatic C/Fortran interface generation for model integration
- Aim is to release NEUT6 as open source under the GPL before the end of 2023
 - Will also release the final NEUT5 series release as open source
- Hope to produce comprehensive data-model comparisons alongside NEUT6
 release

Future: Common Event Format

- Implementing HepMC3-based event format proposed as a common neutrino generator format: <u>NuHepMC</u>
 - See white-paper motivating this work here: <u>https://arxiv.org/abs/2008.06566</u>
 - Formats are only one (small) piece of the puzzle: Common APIs, community flux and geometry tooling
- NuHepMC is a proposed set of agreed-upon minimal metadata beyond the true vector of particles involved in the event.
 - Generator implementations are expected to store additional metadata
 - First draft nearly ready, will be put on arxiv to solicit feedback
 - Working implementations in NEUT, GENIE, NuWro, Achilles, NUISANCE
- HepMC3 is a event format description used by LHC generators:
 - Particle stack + arbitrary metadata
 - Many on-disk formats and official and unofficial analysis tools

Summary

- Development targets needs of J-PARC-based neutrino scattering experiments
 - Focus on few-GeV electron, muon, and tau neutrino interactions with ¹H, ¹²C, ¹⁶O targets
- NEUT provides a complete model for interpreting neutrino-scattering data
 - But a step-change in prediction quality is needed for the next generation
- Factorisations are mathematically and computationally necessary, but we know their usages misses important physical effects:
 - Ongoing effort to understand, quantify, and implement effective corrections.

Summary

- Development targets needs of J-PARC-based neutrino scattering experiments
 - Focus on few-GeV electron, muon, and tau neutrino interactions with ¹H, ¹²C, ¹⁶O targets
- NEUT provides a complete model for interpreting neutrino-scattering data
 - But a step-change in prediction quality is needed for the next generation
- Factorisations are mathematically and computationally necessary, but we know their usages misses important physical effects:
 - Ongoing effort to understand, quantify, and implement effective corrections.
- NEUT has a long, rich history and we want to make sure that it not only survives, but becomes a more useful community tool into the next generation.
 - Effort on opening up the source code
 - Implementing community interfaces and formats
 - Updating dependencies and procedures to modern standards (where possible)

