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Energy reconstruction using only muon kinematics
(works well for quasi-elastic reaction):

EQEν =
m2
p−(mn−EB)2−m2

µ+2(mn−EB)Eµ
2((mn−EB)−Eµ+pµcosθµ)

Energy reconstruction using muon and kinetic
energy of the nucleon:

Evisν = Eµ + TN Evisν , dashed line — QE formula

solid line — µ + N formula

Phys. Rev. D 105, 032010 (2022)

T2K flux

Phys. Rev. D 105, 032010 (2022)
Anna Ershova · NuFACT 2023 · August 25, 2023 2 / 19

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.032010
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.032010


Importance of nuclear effects

µ + N formula gives us more opportunities, but also it creates more challenges for modelling
and we need to understand better nuclear effects also on neutrons and protons.
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We will focus on CCQE ν reaction channel and the Final State Interactions (FSI) that are
described by cascade models and on the nuclear excitation energy.
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Liège Intra Nuclear Cascade

Projectiles: baryons (nucleons, Λ, Σ),
mesons (pions and Kaons) or light nuclei
(A ≤ 18). No neutrinos yet! We use
neutrino vertex from NuWro (widely
used ν-nucleus MC generator).

Flexible tool: has been implemented in
GEANT4 and GENIE

De-excitation: ABLA, SMM, GEMINI

We will use ABLA, since it proved
to work for the light nuclei
( Phys. J. Plus 130, 153 (2015))

First neutrino simulation results:
Phys.Rev.D 106, 3 (2022)
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https://nuwro.github.io/user-guide/
https://link.springer.com/article/10.1140/epjp/i2015-15153-x
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.106.032009


NuWro

• Developed since 2005 in Wroclaw, Poland

• Optimized for use in accelerator-based
neutrino oscillation experiments

• Multiple neutrino channels: QE, hyperon
production, single pion production, 2p-2h,
etc.

In this work, we use implemented Spectral
function initial state model (but also checked
RFG and reweighed INCL)

Cascade with space-like approach:

• The nucleus is a continuous medium

• mean free path: λfree = (σρ(r))−1

• probability to propagate without
interaction: P (∆x) = exp(−∆x/λ)

• LFG model is used during the cascade
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Cascade ingredients of INCL

Potential

Each nucleon in the nucleus has its position and
momentum and moves freely in a square poten-
tial well. Nuclear model is essentially classical,
with some additional ingredients to mimic quan-
tum effects.

Pauli Blocking

criteria by which the state cannot be occupied

Events inside cascade

• decay/collision
• reflection/transmission with probability to

leave the nucleus as a nuclear cluster

Space–kinetic-energy density of protons in 208Pb

Classical picture

Shell-model picture

Phys.Rev.C 91, 034602 (2021)
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Cascade ingredients of INCL

Potential

Each nucleon in the nucleus has its position and
momentum and moves freely in a square poten-
tial well. Nuclear model is essentially classical,
with some additional ingredients to mimic quan-
tum effects.

Pauli Blocking

criteria by which the state cannot be occupied

Events inside cascade

• decay/collision
• reflection
• transmission with probability to leave the

nucleus as a nuclear cluster

Nuclear
cluster

production

Reflection
Ejection
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Excitation energy calculation

A=12

ν(Ek, ~k)

A-1=11

µ(Ek′ , ~k′)

p(Ep′ , ~p
′)

Experimental definition:

Eexp
x = Emissing − (MA −MA−1 −M)

• A constant shift of missing energy by
∼15.4 MeV leads to non-physical,
negative values

• We use experimental data (J. Phys. G:
Nucl. Part. Phys. 16 507 (1999)) to
simulate discrete levels

• We assume all strength below the peak
comes from the symmetric 1p3/2 shell

MA−1 is the rest mass of the A− 1 nucleus

MA is the rest mass of the initial A nucleus

M is the rest mass of the target nucleon

Emissing is the missing energy

For interaction on carbon,
MA −MA−1 −M = 15.4 MeV
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Excitation energy calculation

A=12

ν(Ek, ~k)

A-1=11

µ(Ek′ , ~k′)

p(Ep′ , ~p
′)

For the continuous spectrum part,
we can calculate excitation energy as:

Ex = M∗R −MR,where :

M∗R =
√

(Ek +MA − Ek′ − Ep′)2 − |~pmissing|2

Otherwise, we model 3 discrete peaks with
strength of 79%, 12%, and 9% (p-shell)

M∗R is the mass of the excited remnant

MR is the rest mass of the remnant

TR is the kinetic energy of the excited
remnant

pmissing is the missing momentum
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Results

In the last paper: Phys.Rev.D 106, 3 (2022)
we show the nuclear cluster production for
the first time in FSI.

Now we study the impact of the subsequent
de-excitation modelling, that predicts more
nuclear clusters.
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Production of the nuclear clusters (α, deuterons, tritons...)

ABLA features a massive production of particles with low momentum.

p n D α 3He T
 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 A
ve

ra
ge

 N
um

be
r 

of
 P

ar
tic

le
s 

pe
r 

E
ve

nt

INCL

INCL+ABLA

NuWro

0 100 200 300 400 500 600 700 800 900 1000
 p (MeV/c)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 A
rb

itr
ar

y 
U

ni
ts

alpha cascade
alpha de-excitation
D cascade
D de-excitation
proton cascade
proton de-excitation

Momentum of nuclear clusters produced during the

cascade and de-excitation

Anna Ershova · NuFACT 2023 · August 25, 2023 11 / 19



Proton momentum before FSI

• Large fraction of ”no FSI” events (i.e. proton untouched) is now feature production of
other particles (and nuclear clusters) in the final state due to de-excitation

• Events with only nucleon production now feature nuclear cluster production
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Proton momentum after FSI

INCL+ABLA simulation features massive difference in nucleon kinematics in comparison to
NuWro
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Transverse kinematic imbalance

We use Single Transverse Variables (STV) that allow to disentangle different effects for
better FSI estimation. STV are observable and measurable.

sensitive to FSI: δαT = arccos
−~k′T ·δ~p

′
T

k′T ·δp
′
T

sensitive to Fermi Motion:
δ ~pT = p~pT + p~µT = p~nT

*
ν vertex

~ppT −~pµT

δ~pT

δφT

δαT
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δαT

High δαT strongly depends on FSI and is affected by de-excitation and Pauli blocking
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Comparison to data

Current detector threshold in ND280 and MINERvA
scintillators is too large, so we cannot see the difference
between INCL and NuWro
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Neutrino energy reconstruction

Using µ+ p is better than
using muon only, but here we
show that we gain even higher
precision by using all
subleading particles

proton only:

Erec = Eµ + Tp

all particles (including clusters):

Erec = Eµ +
∑

i Ti
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Vertex Activity as a fraction of neutrino energy

The actual fraction of neutrino energy going
to the kinetic energy of the subleading hadrons
is non-negligible.
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Summary

We compared the simulation of the final-state interactions between the NuWro and INCL
cascade models in CCQE events. We coupled INCL cascade to the ABLA de-excitation model.

• ”transparent events” are no always transparent: nuclear clusters may be produced

• INCL+ABLA simulation features important difference in nucleon kinematics in
comparison to NuWro (and the other similar generator used in neutrino scattering)

• An essential novelty of this study is the simulation of nuclear cluster production
during cascade and de-excitation. It is important for the understanding of the vertex
activity and calorimetric method of ν energy reconstruction

For precise neutrino energy reconstruction (e.g. ”calorimetric method”) is important to
include vertex activity (∼ 1− 2%), and to have proper model of it to correct for detector

quenching. Large portion of VA comes from the de-excitation.
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BACK UP
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Standard INCL cascade

Rmax
=R0+

8a+rint

radius and diffusiness of the

target nucleus density

working sphere

spectator: E < Ef + Et +
2
3
EC

participant

ejectile

Emission threshold
and Coulomb barrier∗

∗only for protons

total NN X-sec at the

incident energy per

nucleon

rint =
(
σtotNN/π

)1/2

E − Ef − Sphysi >0

Separation energy, taken from mass

tables, for the emission from the actual

nucleus
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ABLA

The ablation model ABLA describes
the de-excitation of an excited
nuclear system through the emission
of γ-rays, neutrons, light-charged
particles, and intermediate-mass
fragments (or fission in case of hot
and heavy remnants).

Phys. Rev. C 105, 014623 (2022)

Tfreeze−out = max
[
5.5, 9.33e(−2.82×10

−3Arem)
]

Smin—minimum particle separation energy
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