NuFACT 2023 Seoul (South Korea)

Neutrino Structure Functions from GeV to EeV Energies

Alfonso Garcia

alfonsogarciasoto@fas.harvard.edu

Neutrino cross sections

- A lot of efforts in the last decades to model high-energy cross sections:
 - Consistent picture for free nucleon predictions -> pQCD

$$\frac{d^2 \sigma^{\nu A}(x,Q^2,y)}{dxdy} = \frac{G_F^2 s/2\pi}{\left(1+Q^2/m_W^2\right)^2} \left[(1-y)F_2^{\nu A}(x,Q^2) + y^2 x F_1^{\nu A}(x,Q^2) + y \left(1-\frac{y}{2}\right) x F_3^{\nu A}(x,Q^2) \right]$$

Secondary processes also accounted for.

Missing pieces

- Two pieces are missing:
 - Transition to pQCD at E<100GeV.
 - Implementation of nuclear effects.

• Multiple studies point to shadowing for heavier targets (large errors).

- At 1TeV (1PeV) maximal differences are 10% (20%) wrt CSMS.
- Target dependent.

$Low-Q^2$

- Q<1GeV contribution 10-20% in the 10-100 GeV region.
 - Non-perturbative QCD required.

NNSFnu

- Develop a new method to account for non-pQCD terms.
 - Machine learning parametrisation of low Q using neutrino scattering data.
 - High Q region comes from pQCD.
 - Account for nuclear effects.

Data-driven

• Data from different targets

- Differential cross sections when available.

Dataset	Target	Observable	$n_{ m dat}~(m cuts)$	$\chi^2_{\rm exp}$ (wo QCD)	$\chi^2_{\rm exp}$ (baseline)
BEBCWA59	Ne	F_2	57 (39)	1.673	2.088
		xF_3	57(32)	0.842	0.771
CCFR	Fe	F_2	128 (82)	1.902	2.292
		xF_3	128 (82)	0.857	0.946
CDHSW	Fe	$[F_2]$	143 (92)	[6.17]	[5.32]
		$[xF_3]$	143 (100)	[22.9]	[11.7]
		$[F_W]$	130 (95)	[15.9]	[16.4]
		$d\sigma^{ u}/dx dQ^2$	847 (676)	1.298	1.351
		$d\sigma^{ar{ u}}/dx dQ^2$	704 (583)	1.139	1.237
CHARM	$CaCO_3$	F_2	160 (83)	1.368	1.324
		xF_3	160 (61)	0.721	0.850
CHORUS	Pb	$[F_2]$	67(53)	[63.8]	[38.3]
		$[xF_3]$	67~(53)	[6.881]	[2.904]
		$d\sigma^{ u}/dx dQ^2$	606 (483)	0.986	1.185
		$d\sigma^{ar{ u}}/dxdQ^2$	606 (483)	0.709	0.797
NuTeV	Fe	$[F_2]$	78 (50)	[9.854]	[10.41]
		$[xF_3]$	75 (47)	[6.24]	[3.810]
		$d\sigma^{ u}/dxdQ^2$	1530 (805)	1.436	1.542
		$d\sigma^{ar{ u}}/dxdQ^2$	1344 (775)	1.254	1.311
Total			6197 (4089)	1.187	1.287

4.5

5.0

1.5

NNSFnu

• Smooth transition from low to high Q!!!

Neutrino-Oxygen

- Main points:
 - Differences with respect to BY for antineutrinos (already observed with CSMS).
 - Nuclear effects are relatively small for Oxygen.

Neutrino-Iron

• Good agreement with NuTeV data:

Other targets

• Critical effect in the GeV regime for antineutrinos.

Inelasticity

- Good agreement for average inelasticity.
- Nuclear uncertainties remain small.

Conclusion

Phys.Rev.D 93 (2016) 7, 071101

- New method to extract inclusive structure functions.
 - Propagated uncertainties.
- Next steps:
 - Implementation in GENIE underway.
 - Look at Minerva data!
- More details can be found: JHEP 05 (2023) 149

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101025085.