Neutrino data for nuclear parton distribution determinations

Ji Young Yu SMU Dallas/LPSC Grenoble

In collaboration with: K.F. Muzakka, P. Duwentäster, T. J. Hobbs, T. Jezo, M. Klasen, K. Kovarik, A. Kusina, J.G. Morfin, F. I. Olness, R. Ruiz, I. Schienbein

NuFact2023, Seoul, Aug 21-26, 2023

Monday, October 8, 12

Introduction/Motivation

nPDFs and neutrino data

Neutrino deep inelastic scattering:

- Neutrino data important for many reasons: flavour separation of PDFs, ew precision physics, ...
- Neutrino experiments use heavy nuclear targets: Pb, Fe, Ar, H₂O, C
- As discovered more than 30 years ago by the European Muon Collaboration, nucleon structure functions are modified by the nuclear medium (EMC effect)
- Studies of nucleon structure: need to correct for nuclear effects
- Are nuclear corrections in neutrino DIS the same as in charged lepton DIS?

nPDFs and neutrino data

Neutrino deep inelastic scattering:

- Several studies have been performed:
 - "iron PDFs: PRD77(2008)054013
 - nCTEQ analysis of nuA+IA+DY data: PRL106(2011)122301
 - Differences independent of the proton baseline: Kalantarians, Keppel, PRC96(2017)032201
 - Ultimate analysis: "Compatibility of Neutrino DIS data and its Impact on Nuclear Parton Distribution
 Functions", arXiv:2204.I3I57
 [This talk]

Compatibility of neutrino DIS data and its Impact on NPDFs arXiv:2204.13157

nCTEQ global analysis framework

- Twist-2 collinear factorisation based on QCD factorisation theorems
- Hard processes perturbatively calculable
- Universal nuclear PDFs

DIS
$$F_2^A(x, Q^2) = \sum_i [f_i^A \otimes C_{2,i}](x, Q^2)$$

DY $\sigma_{A+B \to \ell^+ + \ell^- + X} = \sum_{i,j}^i f_i^A \otimes f_j^B \otimes \hat{\sigma}^{i+j \to \ell^+ + \ell^+ X}$
SIH $\sigma_{A+B \to H+X} = \sum_{i,j,k} f_i^A \otimes f_j^B \otimes \hat{\sigma}^{i+j \to k+X} \otimes D_k^B$

$$f_i^A(x,Q) = \frac{Z}{A} f_i^{p/A}(x,Q) + \frac{N}{A} f_i^{n/A}(x,Q)$$

- Parameterization of NPDFs at the initial scale $Q_0 = 1.3 \text{ GeV}$ $(i = u_v, d_v, g, \bar{u} + \bar{d}, s + \bar{s}, s - \bar{s})$
- Scale-dependence of NPDFs by DGLAP evolution
- Sum rules

$$xf_i^{p/A}(x,Q_0) = c_0 x^{c_1} (1-x)^{c_2} e^{c_3 x} \left(1+e^{c_4} x\right)^{c_5}$$
$$\frac{\bar{d}(x,Q_0)}{\bar{u}(x,Q_0)} = c_0 x^{c_1} (1-x)^{c_2} + (1+c_3)(1-x)^{c_4}$$

A-dependent coefficients:

$$c_i(A, Z) = p_i + a_i(1 - A^{-b_i})$$

Free proton PDF parameters

Data sets used in nCTEQ

Reference fit without neutrino data

1.04

Deuteron corrections from CJ15 analysis

Neutrino data

Data set	Nucle	Single pion pro	duction	orr.sys.	Ref.	
CDHSW ν	Fo		11	No	[18]	
CDHSW $\bar{\nu}$	re		Con Con	110		
$\mathrm{CCFR}~\nu$	Fo		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	No	[50]	
$\mathrm{CCFR}\ \bar{\nu}$	10		`	110		
NuTeV ν	Fe	35 - 340	1170	Ves	[93]	
NuTeV $\bar{\nu}$	I C	00 - 040	966	105		
Chorus ν	Ph	25 - 170	412	$V_{\Theta S}$	[97]	
Chorus $\bar{\nu}$	10	20 - 110	412	105		
CCFR dimuon ν	Fe	110 - 333	40	No	[10]	
CCFR dimuon $\bar{\nu}$	10	87 - 266	38	110		
NuTeV dimuon ν	Fo	90 - 245	38	No	[10]	
NuTeV dimuon $\bar{\nu}$	тe	79 - 222	34	110	[13]	

- Chorus, CCFR, NuTeV cross section data: ew corrections applied directly to data
- Chorus, NuTeV: point-to-point correlated systematic errors included in analysis
- Exclude all CCFR data with x>0.4 [see NuTeV collab., PRD74(2006)012008]
- Data from NOMAD (not publicly released), ICECUBE (small x~10⁻⁶), Minerva (low Q): not considered
- Dimuon data from CCFR and NuTeV included in the analysis NOMAD data not included but compared to; older CDHS, CHORUS data not included

TABLE III. Relative experimental uncertainties (in percent) of various data sets at $E_{\nu} \sim 85$ GeV where all **headattatesets** overlap. \square Wc \square

		<u> </u>	W+LF
Experiment	# pts	Relative Entro	$\mathbf{r}(\%)$ Other
CDHSW ν	59	588 <u>3</u> 6	
CDHSW $\bar{\nu}$	59	. ■Q ₀ 75	overflow I
CCFR ν	54	w ⁶ 2€1−−	
CCFR $\bar{\nu}$	54	∽ ¹ 60 ⁹⁰	
NuTeV ν	55	O _{5.8} 5 10	15 20 25 30 35 muon n [GeV
NuTeV $\bar{\nu}$	54	10.29	
Chorus ν	65	7.70	
Chorus $\bar{\nu}$	65	18.32	

DimuNeu fit with only neutrino data

Dim	uon	NuT	eV ν	NuT	eV $\bar{\nu}$	CCH	${ m FR} \ u$	CCF	$\mathbf{\bar{R}}\ \bar{\nu}$
$\chi^2\!/\mathrm{pt}$	# pts	χ^2/pt	#pts	$\chi^2/{ m pt}$	# pts	$\chi^2/{ m pt}$	#pts	$\chi^2/{ m pt}$	# pts
1.06	150	1.51	1170	1.25	966	1.00	824	1.00	826
Chor	us ν	Chor	us $\bar{\nu}$	CDHS	SW ν	CDHS	SW $\bar{\nu}$	To	tal
χ^2 /pt	#pts	$\chi^2\!/\mathrm{pt}$	# pts	$\chi^2/{ m pt}$	#pts	$\chi^2\!/\mathrm{pt}$	# pts	$\chi^2/{ m pt}$	# pts
1.21	412	1.09	412	0.68	465	0.72	464	1.12	5689

DimuNeu fit: χ^2/pt for each data set

- DIS cuts: Q>2 GeV, W>3.5 GeV; CCFR: x<0.4
- Need assumptions since νA data cannot constrain all partons:
 - Fix gluon to gluon of **Ref** fit
 - Fix \bar{d}/\bar{u} to free proton ratio
- 20 free parameters + 10 free normalisations; 5689 data points
- Generally good description but the most precise NuTeV <u>neutrino</u> cross section data have quite a bad χ^2/pt of 1.5. Milder tensions for other NuTeV and Chorus data with $\chi^2/\text{pt} \sim 1.2$.

DimuNeu fit vs Reference fit

Ratio of full nuclear PDF to free PDF: $R[f_i^A] = -\frac{1}{2}$

- Distinct differences between valence quarks and also the light sea quarks
- DimuNeu fit: shadowing only for x<0.01
- Similar picture for lead with significant differences also for the strange quark

Nuclear correction factors

$$F_2^{CC} = (F_2^{\nu A} + F_2^{\bar{\nu}A})/2$$

- The Reference fit to charged lepton DIS+DY+SIH+W,Z data describes the IA DIS data (by construction)
- The NPDFs from the neutrino only DimuNeu fit predict a different shape for the nuclear correction factor not describing the IA DIS data
- Conversely, the DimuNeu fit describes the neutrino data (by construction even if the structure function data have not been used)
- The prediction from the *Ref fit* does **not** describe the neutrino data well

 $R[F_2^{CC}] = \frac{F_2^{CC}[f_i^A]}{F_2^{CC}[f_i^{A,\text{free}}]}$

Combined global analysis

- Usually one includes new data in a global analysis in order to improve the precision or the (x,Q) coverage of the previous analysis
- Is it possible to have a combined global analysis of all data?
 IA DIS + DY + SIH + LHC W,Z + νA DIS
- If there are tensions, there are two possibilities:

a)**Theory wrong**?

- Breakdown of twist-2 factorisation (no universal PDFs): Big problem!
- Twist-2 factorisation valid but need to improve theory (higher orders, resummation, higher twists, TMC)
- b) **Data wrong** or unrealistically precise?
- How to quantify tensions or the compatibility of data? Not discussed here

Combined global analysis

Analysis name	χ_S^2/N	$\chi^2_{ar{S}}/N$	$\Delta \chi^2_S$	$\Delta \chi^2_{ar{S}}$	$p_S/p_{ar{S}}$
nCTEQ15WZSIHdeut	735/940	-	0	-	0.500 / -
DimuNeu	-	6383/5689	-	0	- / 0.500
BaseDimuNeu	866/940	6666/5689	131	283	0.99987/0.990

- nCTEQ15WZSIHdeut=Ref=Base: IA DIS + DY + SIH + LHC W,Z
- *DimuNeu*: Dimuon + CDHSW + CCFR + NuTeV + Chorus
- BaseDimuNeu: Ref data (S) + DimuNeu data (\overline{S}) (combined global analysis of Reference data and all neutrino data)
- Same 27 parameters in all fits
- Tolerance of Ref fit: $\Delta \chi_S^2 = 45$
- $\Delta \chi_S^2 = 131$, $\Delta \chi_{\overline{S}}^2 = 283$: *S* and \overline{S} data **not compatible**

Ratio of full iron PDFs to Reference PDFs

• Uncertainty bands: Hessian method with $\Delta \chi^2 = 45$

- Important differences between Ref fit and BaseDimuNeu fit for u_v, d_v PDFs
- No real tension for strange PDF since the neutrino data provide first strong constraint on s-PDF. However, neutrino differential cross section data prefer a different strange than dimuon data.

Ratio of full iron PDFs to Reference PDFs

• Uncertainty bands: Hessian method with $\Delta \chi^2 = 45$

- νA DIS data with a cut x > 0.1
- Improved compatibility but cut x>0.1 difficult to justify

Ratio of full lead PDFs to Reference PDFs

- Uncertainty bands: Hessian method with $\Delta \chi^2 = 45$
- BaseDimuChorus: Ref data + Dimuon + Chorus data
- Dimuon + Chorus data compatible with Reference data; improved strange PDF

Comparison with NOMAD data

Conclusions

Neutrino DIS vs Charged lepton DIS

Ultimate analysis: "Compatibility of Neutrino DIS data and Its Impact on Nuclear Parton Distribution Functions", arXiv:2204.13157

Data set	Nucleus	$E_{\nu/\bar{\nu}}(\text{GeV})$	# pts	Corr.sys.	Ref.
CDHSW ν	Fo	22 - 188	465	No	[48]
CDHSW $\bar{\nu}$	10	20 - 100	464	110	
CCFR ν	Fo	35 - 340	1109	No	[50]
CCFR $\bar{\nu}$	1.6	<u> 55 - 540</u>	1098	NO	
NuTeV ν	Fe	35 - 340	1170	Ves	[23]
NuTeV $\bar{\nu}$	10	00 - 040	966	105	[20]
Chorus ν	Ph	25 - 170	412	Ves	[97]
Chorus $\bar{\nu}$	10	20 - 110	412	105	[4]
CCFR dimuon ν	Fe	110 - 333	40	No	[10]
CCFR dimuon $\bar{\nu}$	10	87 - 266	38	110	[19]
NuTeV dimuon ν	Fe	90 - 245	38	No	[19]
NuTeV dimuon $\bar{\nu}$	тс	79 - 222	34	110	[19]

- Most thorough analysis so far (thesis K. F. Muzakka, U Münster): different tools to analyse compatibility of data
- Neutrino data creates significant tensions between key data sets: neutrino vs charged lepton+DY+LHC
- Tensions among different neutrino data sets: iron (CDHSW, NuTeV, CCFR) vs lead (CHORUS)?
- Next nCTEQ analysis will include CHORUS and Di-muon data but not NuTeV, CCFR, CDHSW data

Backup

Scale dependence predicted by QCD

- ► *x*-dependence of PDFs is NOT calculable in pQCD
- µ²-dependence is calculable in pQCD given by DGLAP
 (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) evolution equations

DGLAP evolution equations

$$\frac{df_q(x,\mu^2)}{d\log\mu^2} = \frac{\alpha_S(\mu^2)}{2\pi} \int_x^1 \frac{dy}{y} \left[P_{qq}\left(\frac{x}{y}\right) f_q(y,\mu^2) + P_{qg}\left(\frac{x}{y}\right) f_g(y,\mu^2) \right] \\ \frac{df_g(x,\mu^2)}{d\log\mu^2} = \frac{\alpha_S(\mu^2)}{2\pi} \int_x^1 \frac{dy}{y} \left[P_{gg}\left(\frac{x}{y}\right) f_g(y,\mu^2) + P_{gq}\left(\frac{x}{y}\right) f_q(y,\mu^2) \right]$$

- ▶ Different PDFs mix set of $(2n_f + 1)$ coupled integro-differential equations.
- Need boundary conditions f_i(x,Q₀) at some perturbative initial scale Q₀ ≥ I
 GeV
- The x-dependence is not calculable in pQCD, perform global analysis of experimental data [EPPS, nCTEQ, nNNPDF, ...]
- Progress on the lattice: see arXiv:1711.07916, 2006.08636

Sum rules provide constraints

Number sum rules – connect partons to quarks from SU(3) flavour symmetry of hadrons; proton (*uud*), neutron (*udd*). For protons:

$$\int_{0}^{1} dx [\underbrace{f_{u}(x) - f_{\bar{u}}(x)}_{u-\text{valence distr.}}] = 2 \qquad \qquad \int_{0}^{1} dx [\underbrace{f_{d}(x) - f_{\bar{d}}(x)}_{d-\text{valence distr.}}] = 1$$
$$\int_{0}^{1} dx [f_{s}(x) - f_{\bar{s}}(x)] = \int_{0}^{1} dx [f_{c}(x) - f_{\bar{c}}(x)] = 0$$

▶ Momentum sum rule – momentum conservation connecting all flavours

For all scales:

For all

scales:

$$\sum_{i=q,\bar{q},g} \int_0^1 dx \ x f_i(x) = 1$$

Momentum carried by up and down quarks is only around half of the total proton momentum the rest of the momentum is carried by gluons and small amount by sea quarks. In case of CT14NLO PDFs ($\mu = 1.3$ GeV):

At 1.3 GeV:

$$\int_0^1 dx \, x [f_u(x) + f_d(x)] \simeq 0.51$$
$$\int_0^1 dx \, x f_g(x) \simeq 0.40$$

Nuclear modifications

- Neutrino experiments use heavy nuclear targets: Pb, Fe, Ar, H₂O, C
- As discovered more than 30 years ago by the European Muon Collaboration, nucleon structure functions are modified by the nuclear medium (EMC effect)
- Studies of nucleon structure: need to correct for nuclear effects
- Nuclear effects interesting in its own right!
 - Many models exist.
 - However, charged lepton nuclear effects still not fully explained, in particular the EMC effect (0.3 < x < 0.7)

The EMC effect

 $F_2^A(x) \neq ZF_2^p(x) + NF_2^n(x)$

Global analysis of nuclear PDFs

Same approach as for proton PDF determinations

Boundary conditions:
 Parameterize x-dependence of PDFs at initial scale Q₀

 $f(x, Q_0) = A_0 x^{A_1} (1-x)^{A_2} P(x; A_3, ...); f = u_v, d_v, g, \overline{u}, \overline{d}, s, \overline{s}$

- $f(x2.Q_0)$ Evalue ${}^{A_0}f(\Phi m x Q_0^{A_0} R \phi x Q A s_0 | x i)g f(he u D G L A P u, d, s, s)$ evolution equations: f(x, Q)
 - 3. Define suitable χ^2 function and miniphize T_{w_r} . If $X_{global}^2 [A_i] = \sum_{n=1}^{\infty} w_n X_n^2; X_n^2 = \sum_{I} (\frac{IP_n IZe}{\sigma_{nI}})^2$.

Analysis of neutrino DIS data within nCTEQ

- Are there tensions between different neutrino data sets?
- Are there tensions between neutrino DIS data and other data used in nCTEQ global analyses?
 - Global analyses with and without neutrino data
 - Careful treatment of data correlation and normalisation uncertainties
 - Taking into account nuclear effects in the calculation of the deuteron structure function F_2^D
- Confirm evidence of tensions employing different criteria
- Identify data points and kinematic regions that create the tensions
 - Can tensions be relieved using a kinematic cut x>0.1?
 - Can tensions be relieved using uncorrelated systematic errors?
- Identify a subset of neutrino data allowing for a consistent global analysis

Comparison with CMS W,Z data

- Similar predictions from the DimuNeu and the Ref fits for LHC W,Z production data
- Not a surprise since this observable is quite sensitive to the gluon PDF which has been fixed to be the same at the initial scale.

Nuclear corrections from neutrino data

Weighted average of neutrino cross section ratios

$$R_i^{\sigma}(x) = \frac{\sigma(x, y_i, E_i)}{\sigma_{\text{free}}(x, y_i, E_i)}$$

Denominator: nCTEQ15 proton

Denominator: CT18 proton

Nuclear corrections from neutrino data

Weighted average of neutrino cross section ratios

$$R_i^{\sigma}(x) = \frac{\sigma(x, y_i, E_i)}{\sigma_{\text{free}}(x, y_i, E_i)}$$

- Data vs predictions from the DimuNeu fit
- Iron:A=56, Z=26
- Lead: A=208, Z=82

Iron only and lead only fits

- Dimunulron fit:
 Only neutrino-iron data from CDHSW, CCFR and NuTeV
- ChorusW fit:

Only data only lead from Chorus and LHC W,Z

The prediction from the *Ref fit* does **not** describe the neutrino data well

- I4 free parameters (since no A-dependence needed)
- Nuclear corrections generally similar to global *DimuNeu* analysis
- ChorusW prediction for lead higher at x ~ 0.1,0.2 and much lower at high x (no pull from NuTeV data)

- Difference between iron and lead nuclear correction factors:
 - Large excess of neutrons in lead nucleus whereas iron almost isoscalar
 - Nuclear A-dependence (subleading)

More global analyses with neutrino data

Analysis name		χ_S^2/N	χ_S^2/pt	$\chi^2_{ar{S}}/N$	$\chi^2_{\bar{S}}/pt$	$\Delta \chi^2_S$	$\Delta\chi^2_{ar{S}}$	$p_S/p_{ar{S}}$
Ref fit = Base	nCTEQ15WZSIHdeut	735/940	0.78	-	-	0	-	0.500 / -
Dimuons+Chorus	DimuChorus	-	_	1059/974	1.09	_	0	- / 0.500
Ref data + Chorus	BaseChorus	737/940	0.78	969/824	1.18	2	_	0.530 $/$ -
Ref data + CDHSW	BaseCDHSW	778/940	0.83	584/929	0.63	43	_	$0.895\;/$ -
Ref data + CCFR	BaseCCFR	815/940	0.87	2119/2207	0.96	80	_	0.989 / -
Ref data + NuTeV	BaseNuTeV	807/940	0.86	3049/2136	1.43	72	_	$0.981 \; / \;$ -
Ref data + NuTeV (uncor)	BaseNuTeVU	787/940	0.84	1984/2136	0.93	52	_	0.933 $/$ -
Ref data + all neutrinos	BaseDimuNeuU	861/940	0.92	5569/5689	0.98	126	_	0.99978 / -
<i>νA</i> DIS with x>0.1	BaseDimuNeuX	781/940	0.83	5032/4644	1.08	46	_	0.908 / -
Ref data + DimuChorus	BaseDimuChorus	740/940	0.79	1117/974	1.15	5	58	$0.559\ /\ 0.885$

Data set	#nts	$\chi^2/{ m pt}~(S_E)$	$\chi^2/{ m pt}~(S_E)$
		DimuNeu	BaseDimuNeu
CDHSW ν	465	0.68 (-5.29)	0.59 (-7.01)
CDHSW $\bar{\nu}$	464	0.73 (-4.47)	0.69(-5.22)
CCFR ν	824	0.99 (-0.09)	$1.03 \ (0.56)$
CCFR $\bar{\nu}$	826	1.00(0.07)	$1.02 \ (0.45)$
NuTeV ν	1170	1.51(11.12)	$1.61 \ (13.05)$
NuTeV $\bar{\nu}$	966	1.25(5.16)	1.27 (5.50)
Chorus ν	412	1.21 (2.85)	1.25 (3.40)
Chorus $\bar{\nu}$	412	1.09(1.26)	1.25 (3.35)
CCFR dimuon ν	40	1.70(2.79)	2.52 (5.32)
CCFR dimuon $\bar{\nu}$	38	0.79 (-0.89)	0.64(-1.68)
NuTeV dimuon ν	38	0.98 (-0.06)	2.11 (4.01)
NuTeV dimuon $\bar{\nu}$	34	0.73 (-1.16)	$1.16\ (0.70)$

TABLE VI. Statistical information on the description of the neutrino data sets used in different analyses.

TABLE VII. Statistical information on the description of the selected neutral current DIS data sets used in the reference nCTEQ15WZSIHdeut and BaseDimuNeu analyses.

Experiment	Target	ID =	#pts	$\chi^2/{ m pt}~(S_E)$	$\chi^2/{ m pt}~(S_E)$
	101800			Reference	BaseDimuNeu
NMC-95	C/D	5113	12	0.88 (-0.20)	1.70(1.59)
NMC-95,re	C/D	5114	12	1.18(0.53)	2.16(2.40)
NMC-95	Ca/D	5121	12	1.15(0.46)	2.98(3.66)
BCDMS	Fe/D	5101	10	0.63 (-0.81)	2.00(1.97)
BCDMS	Fe/D	5102	6	0.48 (-0.93)	1.62(1.09)