

Measurement of the inelasticity distribution of neutrino-nucleon interactions for 100 GeV < E_v < 1 TeV with IceCube DeepCore

Maria Liubarska for the IceCube Collaboration

August 25

NuFACT 2023

IceCube Neutrino Observatory

^{4.} Seowon Choi, Aug. 25

NuFACT23 IceCube talks

and posters:

2.

3.

Inelasticity

★ Inelasticity is a fraction of neutrino energy transferred to the hadronic system in an inelastic neutrino-nucleon interaction

$$y = \frac{E_{hadr}}{E_{\nu}}$$

- \star Inelastic scattering cross sections depend on inelasticity
 - ♦ DIS cross section:

$$\frac{d^2 \sigma_{CC}^{\nu N}}{dx dy} = 2x \sigma_0 \left(\sum_{d,s} f_q^N(x) + (1-y)^2 \sum_{\bar{u},\bar{c}} f_{\bar{q}}^N(x) \right)$$

 \star In IceCube, inelasticity can be reliably reconstructed for $u_{_{
m I\!I}}$ CC events

Inelasticity reco in IceCube

[1] *IceCube Collaboration,* R. Abbasi et al., "<u>Low energy event</u> <u>reconstruction in IceCube DeepCore</u>"

- ★ v_{μ} CC interactions starting inside DeepCore result in track+cascade signature
- ★ Using likelihood reconstruction algorithm [1] to recover muon and hadronic shower energies

4

Energy range of interest

- ★ Using DeepCore data with reconstructed neutrino energy from 100 GeV to 1 TeV energy range
- ★ Measurement in 3 energy bins

[2] J.A. Formaggio, G.P. Zeller, "<u>From eV</u> to EeV: Neutrino Cross Sections

Across Energy Scales"

Event sample

★ 7268 events from 9.28 years of IceCube data

- \diamond Well reconstructed v_{μ} CC events starting inside DeepCore
- \diamond 99% pure v_{u} CC sample
- \diamond ~10% resolution for inelasticity reconstruction in our sample

Analysis method

 ★ Using approximate parametrization [3] for Inclusive inelasticity distribution with two independent parameters, <y> and log₁₀λ

$$\frac{dp}{dy}(\langle y \rangle, \lambda) \equiv \frac{1}{\sigma} \frac{d\sigma}{dy}(\langle y \rangle, \lambda) =$$
$$= N(\langle y \rangle, \lambda) \cdot (1 + \epsilon(\langle y \rangle, \lambda) \cdot (1 - y)^2) \cdot y^{\lambda - 1}$$

[3] *IceCube Collaboration*, M.G. Aartsen et al., "<u>Measurements using the inelasticity distribution of</u> <u>multi-TeV neutrino interactions in IceCube</u>"

Analysis method

 ★ Using approximate parametrization [3] for Inclusive inelasticity distribution with two independent parameters, <y> and log₁₀λ

$$\frac{dp}{dy}(\langle y \rangle, \lambda) \equiv \frac{1}{\sigma} \frac{d\sigma}{dy}(\langle y \rangle, \lambda) =$$
$$= N(\langle y \rangle, \lambda) \cdot (1 + \epsilon(\langle y \rangle, \lambda) \cdot (1 - y)^2) \cdot y^{\lambda - 1}$$

[3] *IceCube Collaboration*, M.G. Aartsen et al., "<u>Measurements using the inelasticity distribution of</u> <u>multi-TeV neutrino interactions in IceCube</u>"

★ Measuring shape of *flux-averaged inelasticity distribution*

$$\frac{dp}{dy}_{fl. av.}(E) = \tilde{\Phi}_{v}(\Phi, \sigma, sel.; E) \cdot \frac{dp}{dy}_{v}(E) + \tilde{\Phi}_{\bar{v}}(\Phi, \sigma, sel.; E) \cdot \frac{dp}{dy}_{\bar{v}}(E)$$

detected flux

Analysis method

- \star Forward folding method
- ★ Fitting shape of inelasticity distribution in 3 energy bins simultaneously
- ★ Systematic parameters are shared for all 3 bins and are fitted at the same time

2.0

1.5

Кр/dр

0.5

00

0.0

0.2

0.4

0.6

٧

 $< y > = 0.40, \lambda = 1.0$

v > = 0.44, $\lambda = 0.9$

 $v > = 0.48. \lambda = 1.1$

0.8

1.0

Systematic uncertainties

[4] *IceCube Collaboration*, R. Abbasi et al., "Measurement of atmospheric neutrino mixing with improved IceCube DeepCore calibration and data processing"

- ★ Systematic treatment as described in [4]
- ★ Most relevant systematics for this analysis related to detector & ice uncertainties

Group	Systematic	Nominal value	Prior	Range
Flux	delta_index	0.0	± 0.1	[-0.5, 0.5]
	dom_eff	1.0	± 0.1	[0.8, 1.2]
Detector	bulk_ice_abs	1.0	uniform	[0.85, 1.15]
	bulk_ice_scatter	1.0	uniform	[0.85, 1.15]
	hole_ice_p0	-0.2674	± 0.6	[-2.0, 1.0]
	hole_ice_p1	-0.04206	± 0.12	[-0.2, 0.2]
Normalization	aeff_scale	1.0	uniform	[0.0, 3.0]

Results

Data-MC agreement

★ Fit ρ -value = 9.5%

Results in (<y>, λ) space

 \star Best fit points for a set of physics parameters in each of three energy bins

Results in (<y>, λ) space

 \star Best fit points for a set of physics parameters in each of three energy bins

★ Can extract inelasticity distribution shapes corresponding to the best fit values of physics parameters for each of energy bins

<y> comparison to existing data

[3] *IceCube Collaboration*, M.G. Aartsen et al., "Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube"

[5] M. Honda et al., "<u>Atmospheric neutrino flux</u> calculation using the NRLMSISE-00 atmospheric model"

[6] *GENIE Collaboration,* C. Andreopoulos et al., "<u>The</u> <u>GENIE Neutrino Monte Carlo Generator</u>"

[7] A. Bodek, U.K. Yang, <u>"Higher twist, ξw scaling, and</u> effective LO PDFs for lepton scattering in the few GeV region"

[8] A. Cooper-Sarkar et al., "<u>The high energy neutrino</u> cross-section in the Standard Model and its <u>uncertainty</u>"

<y> comparison to model predictions

Functions from GeV to EeV Energies" (thanks to Alfonso Garcia for providing NNSF_v cross section!)

Summary

- ★ New measurement of flux-averaged inelasticity distribution shape for neutrino energies from ~100 GeV to 1 TeV
- ★ 9.3 years of IceCube data
- ★ All tested theoretical model predictions compatible with the measurement at 1σ level
- ★ Future analyses can improve sensitivity
 - ♦ By expanding the sample with more data
 - IceCube Upgrade will offer great reduction in detector & ice uncertainties

Backup

Best fit parameters

	$\langle y \rangle$ bin 1	$0.45 \pm 0.02 \pm 0.005$	[0,1]
	$\langle y \rangle$ bin 2	$0.46 \pm 0.02 \pm 0.004$	[0,1]
ers:	$\langle y \rangle$ bin 3	$0.45 \pm 0.02 \pm 0.006$	[0,1]
	$\log_{10} \lambda$ bin 1	$0.02^{+0.09}_{-0.12}$	[-4, 0.8]
	$\log_{10} \lambda \text{ bin } 2$	$0.10\substack{+0.06 \\ -0.05}$	[-4, 0.8]
	$\log_{10} \lambda$ bin 3	$0.10^{+0.05}_{-0.04}$	[-4, 0.8]

Parameter

Best fit

Physics parameter

Group	Systematic	Best fit value	Nominal value	Prior	Range
Flux	delta_index	0.11	0.00	± 0.1	[-0.5, 0.5]
	dom_eff	1.07	1.00	± 0.1	[0.8, 1.2]
	bulk_ice_abs	1.00	1.00	uniform	[0.85, 1.15]
Detector	bulk_ice_scatter	1.01	1.00	uniform	[0.85, 1.15]
	hole_ice_p0	-0.5991	-0.2674	± 0.6	[-2.0, 1.0]
	hole_ice_p1	-0.02251	-0.04206	± 0.12	[-0.2, 0.2]
Normalization	aeff_scale	0.78	1.00	uniform	[0.0, 3.0]

Allowed range

Nuisance parameters:

2d scan for all combinations

Neutrino fraction estimate

- ★ Our mean inelasticity result can be used to make an estimate of neutrino fraction in the detected flux assuming certain cross section model
 - Detected flux is convolution of atmospheric neutrino flux, neutrino cross sections and selection effects
- ★ This is **not** an independent measurement, but a simple calculation:

Neutrino fraction in sample

Comparison to models without charm

Neutrino interaction types

- ★ 7268 events from 9.28 years of IceCube data
- ★ Expectation from nominal MC (GENIE 2.12.8)
 - ♦ Total non-DIS 2.2% (exp. 160 events/9.28y)
 - ♦ RES 1.3% (exp. 97 events/9.28y)
 - ♦ QE 0.7 (exp. 48 events/9.28y)
 - ♦ Other non-DIS 0.2% (exp. 15 events/9.28y)

Energy and y resolutions

True energy distribution by bin

Physically allowed parameters space

Figure 4.6: Physically allowed region in $(\langle y \rangle, \lambda)$ space (shaded in green) with physics boundaries (solid lines).

Inelasticity in IceCube

 \star In IceCube, inelasticity can be reliably reconstructed for $u_{_{
m II}}$ CC events

