

Operation and results of the FASERv detector

Jeremy Atkinson (Universität Bern) on behalf of the FASER Collaboration 25th of August 2023, NuFACT 2023

ForwArd Search ExpeRiment

- New small experiment based at the LHC at CERN, taking data since 2022.
- Investigating light, long-lived, weakly-interacting particles in the far-forward region of 13.6 TeV proton-proton collision at the ATLAS collision point (IP1).
- Aligned with the collision axis line-of-sight, maximising both the number and energy of neutrino interactions of all 3 flavours.
- First collider neutrino experiment!

High Energy Neutrinos in FASER

- FASER takes advantage of the intense forward hadron production in proton-proton collisions to produce a collimated neutrino beam.
- 3-flavour cross-section measurement for previously unexplored energy range \rightarrow highest E_v from artificial source.
- Neutrino induced heavy quark production $\rightarrow \mathcal{O}(1000)$ events via charm production channels expected.

NuFACT 25/08/2023

Jeremy Atkinson, Universität Bern

τ

 W^{\pm}

 V_{cd}

Neutrino spectrum at FASER

 Expect > 10 000 neutrino interactions in FASER in LHC Run 3 (2022 - 2025) → 250 fb⁻¹.

For 250 fb ⁻¹	$v_e + \overline{v}_e$	$ u_{\mu} + \overline{ u}_{\mu}$	$ u_{ au} + \overline{ u}_{ au}$
Main source	Kao/Charm decay	Pion/Kao n decays	Charm decay
N ^o expected CC events in FASERv	~ 2850	~ 9600	~ 70

(Based on PhysRevD.104.113008)

NuFACT 25/08/2023

The FASER Detector

 The detector is composed of both spare parts from other experiments as well as new dedicated components.

Front Scintillator

The FASERv Sub-Detector

- Module: 730 alternating FASERv emulsion films and 1.1 mm thick tungsten plates (25 x 30 cm²).
- Target mass 1.1 tonnes; 1.1 m (220 X₀, 8λ).
- Module replaced 3 times per year every 30fb⁻¹ to keep track occupancy < 10⁶/cm².
- Temperature kept constant at 0.1°C level with dedicated cooling system.
- Neutrino events can be flavour tagged using topological and kinematical variables.

FASERv Process

FASERv Assembly at CERN

- FASERv sub-modules: 10 alternating emulsion films and tungsten plates.
- 2 dedicated assembly table for parallel assembly.
- Pressure is applied to keep the alignment between sub-modules inside the FASERv module.

73 sub-modules installed

FASERv Exchange

- Irradiated module extracted, and new module installed.
- Performed by FASER members with CERN technical teams.

FASERv Development at CERN

- Development campaign lasts ~12 days.
- Films are extracted and labelled.
- 200 films developed with one set of chemicals in 3 days (1 cycle).
- 25 films developed together (1 chain) →
 3.5 hours + 1 day drying.
- 25-minute shift between chains.

Film Readout in Nagoya

Hyper Track Selector (HTS): complex microscope system scans films for digital readout.

- Images made at different focal depths in emulsion;
- 5.1 x 5.1 mm² field of view;
- Each film scanned in 8 zones;
- 60 80 minutes for each film.

FASERv Event Reconstruction

- Dedicated film alignment is performed using high-momentum muon tracks ($\mathcal{O}(10^5)$ tracks/cm²).
- Track reconstruction links base-tracks on different films using position and angular information.
- Single film hit efficiency if found by considering whether a selected film has a hit given that 2 films either side have hits → observed efficiency > 90%.

FASERv Performance

- Position resolution found using position displacement between hit and linear track fit.
- Observed <0.3 μm hit resolution after dedicated film alignment.

plate 1

х 🖌

position displacement (δx or δy)

Fit is done without the hit on plate 3

Momentum Measurement

- Particle momenta calculated using Multiple Coulomb Scattering (MCS) via the Coordinate Method.
- Allows particle momenta to be measured using MCS even for > 1 TeV.
- Momentum resolution ~ 20% at 200 GeV.

FASERv v_e candidate event

New FASERv Results – Background Study using Data

- First analysis: interactions occurring in 150 tungsten plates (target mass = 68.2 kg).
- Detected vertices before high-energy selection dominated by neutral hadron interactions.

MC normalized to number of observed events.

- Expectation: 216 vertices $(K_s, K_L, n, \overline{n}, \Lambda, \overline{\Lambda})$ interactions)
- Data: 133 vertices → 140 detected; 7 v CC candidates.
- Lies within 50% uncertainty.

New FASERv Results – Observed Events

- 7 selected v CC events after applying kinematic selection (p_{lep} > 200 GeV).
- $3 v_e CC \rightarrow 5\sigma$ exclusion of the background-only hypothesis.
- Highest energy v_e observed!
- First direct observation of v_e CC interactions at the LHC!

See also Tomoko Ariga's Plenary talk on 21/08: "<u>New results on LHC neutrinos from the FASER</u> <u>experiment</u>"

Interaction	Expected background		Expected signal	Observed
	Hadron interactions	v NC interactions		
ν _e CC	0.002 ± 0.002	-	$1.2^{+4.0}_{-0.6}$	3
v_{μ} CC	0.32 ± 0.16	0.19 ± 0.15	$4.4^{+4.2}_{-1.4}$	4

New FASERv Results – Data/MC Comparison

Summary

- The FASERv emulsion detector measures TeV-scale neutrinos of all 3 flavours → First collider neutrino experiment!
- FASER is successfully operating during CERN LHC Run 3.
- First observation of v_{μ} CC interactions using FASER electronic components (<u>Phys. Rev. Lett. 131, 031801</u>).
- 5 FASERv modules have been irradiated, collecting 60 fb⁻¹ to date, with another 200 fb⁻¹ expected in Run 3.
- FASERv operations include:
 - Emulsion film production;
 - Detector assembly and development;
 - Developed film scanning using HTS microscope.
- New results from FASERv: v_e and v_{μ} CC interaction candidates presented \rightarrow First observation of v_e CC interactions at the LHC, at highest v_e energies measured!
- First physics results with FASERv demonstrate the ability to carry out neutrino measurements with emulsion-based detectors in the challenging conditions at the LHC → a lot more physics to come...

Backup

NuFACT 25/08/2023

Jeremy Atkinson, Universität Bern

FASER detector

FASER Operations

- Successful running in 2022.
- Recorded 96% of delivered luminosity \rightarrow > 35 fb⁻¹.
- FASERv module exchanged twice due to occupancy in emulsion.
- Example event: muon leaving track in full detector
 → all detector components working well.

FASERy wetween wet and the state of the stat

To ATLAS II

Film production

- Emulsion gel and films produced at Nagoya University in dedicated facility.
- Silver bromide crystals, diameter 200 nm.
- 110 m² of emulsion for every module.
- Resetting procedure performed in Nagoya University and Kyushu University.

NuFACT 25/08/2023

Emulsion Facility at CERN

- New facility set up at CERN for emulsion experiments

 includes modern climate control and ventilation
 system, access card entry, and full dark room
 capabilities for emulsion handling.
- 3 dedicated room: assembly, development and drying.
- Shared with NA65/DsTau, SND@LHC and SHiP Collaborations.
- Darkroom operations: module assembly and development.

Development

- FASERv module disassembly is performed in darkroom conditions by 2 people.
- 5 sub-modules (50 films) are extracted, disassembled, labelled and sorted into 2 packs of 25 films → Odd and Even films are separated and are developed in different batches of chemicals.
- Labelling is performed using a digital label maker.

Development

- 730 FASERv films in one FASERv module.
- 200 FASERv films \rightarrow one cycle.
- 25 FASERv films hung using clips per rack
 → one chain.
- 4 cycles of 9 chains → each cycle takes approximately 3 days.
- Can have 3 chains going in parallel with around 25 minute shift.
- Approximately same number of films per chain in sets of 3 chains.
- Odd and Even films from the same submodule are never developed in the same cycle.

Cycle	Day 1	Day 2	Day 3
08:00			
09:00	Chemical		
10:00	preparation		
11:00	preparation		3 chains
12:00			
13:00		6 chains	
14:00	Test		
15:00	Development		Chemical
16:00			disposal
17:00			
18:00			
19:00			

]	Solution	Time	Nº tanks
	Developer	20 minutes	1
	Stopper	10 minutes	1
	Fixer	1 hour	3
	Wash 1	1 hour	3
	Wash 2	1 hour	3
	Drywell	10 seconds	1
	Total	3.5 hours + 1 day drying	

Module temperature control

- Temperature of the FASERv module is kept constant at 0.1°C level with dedicated cooling system.
- Water in heat exchanger is kept at 15°C, and a fan system mixes the air in the FASERv trench, with a slanted perforated plate which helps further mix the air on all sides of the module.
- An insulating layer is placed between the FASERv module and rest of FASER, and the trench is closed with an insulated metal cover → this is to ensure temperature stability which both increases alignment and minimises the fading effect of emulsion, as well as to understand the long-term properties.
- 4 temperature sensors are placed in and around the module to monitor the temperature.

NuFACT 25/08/2023

Jeremy Atkinson, Universität Bern

Shower Energy Measurement

- Performed by counting number of segments within a cylinder along an electron candidate → shower maximum has the highest number of segments.
- Background segments are sizable \rightarrow cylinder size limited to r = 100 µm, length = 8 cm; segment angle with respect to shower axis < 10 mrad; minimum distance to segment < 50 µm.
- Average background estimated by using random cylinders and subtracting from the shower before energy estimation.

Generator flux uncertainty

- Uncertainties come from the difference between DPMJET and SIBYLL generators in modelling pp collisions.
- Mainly in the high-E range due to charm production.
- Charm hadrons produce v_{τ} , high-E v_{μ} , $v_e \rightarrow$ by deconvolving charm contribution, this can help constrain neutrino flux.

Heavy-flavour-associated channels

- Measure charm production channels:
 - ~10% v CC event → O(1000) events via charm production channels expected;
 - 1^{st} measurement of v_e induced charm production;
 - Can be observed in FASERv due to secondary charm decay vertex.

$$\frac{\sigma(\nu_{\ell}N \to \ell X_c + X)}{\sigma(\nu_{\ell}N \to \ell + X)} \qquad l = e, \mu$$

- Search for Beauty production channels
 - Expected SM events (v_µCC) $\mathcal{O}(0.1)$ in Run 3 \rightarrow CKM suppression $V_{ub}^2 \approx 10^{\mu_5}$.
 - BSM physics could amplify, such W' boson, charged Higgs boson, TeV scale leptoquark.

FASER "Electronic" Neutrino Search

- Selection criteria:
 - Collision event in good data periods (35.4 fb⁻¹);
 - No signal in front 2 veto scintillators (<40 pC);
 - Signal in last 2 veto stations (>40 pC);
 - Signal in timing and pre-shower scintillators consistent with >= 1 MIP;

- Exactly 1 good spectrometer track with p > 100 GeV;
- r_{max} < 95 mm in fiducial tracking volume;
- Extrapolating to front veto station, r < 120 mm;
- θ < 25 mrad.

- 151 ± 41 neutrino events expected from simulation:
 - Uncertainty from difference between generators (DPMJET & SIBYLL).
 - No experimental errors were included.

Background estimation

- <u>Neutral hadrons 0.11 ± 0.06</u>:
 - Expect approx. 300 with E > 300 GeV;
 - Tungsten absorbs the majority;
 - Estimated from 2-step simulation.
- <u>Scattered muons 0.08 ± 1.83:</u>
 - Extrapolated from sideband control region;
 - Single track in the front tracker station;
 - Scaled to full detector volume using simulation.
- <u>Veto inefficiency negligible:</u>
 - Estimated from events where only 1 veto scintillator fired;
 - Very high veto efficiency.

Veto scintillator

Results

- **153**⁺¹²₋₁₃ neutrino events observed.
- Corresponds to **16o**.
- First direct observation of collider neutrinos.

Category	Event
Signal (n ₀)	15
n ₁₀	4
n ₀₁	6
n ₂	64014695