

TABLE OF CONTENTS

- The T2K experiment
- Recent official results
 - Charged current coherent on carbon
 - Combined on- and off-axis $0\pi^{+/-}$
- Upcoming measurements
 - Intermediate angle $0\pi^{+/-}$ and combination of all angles

Lukas Koch

- Kaon production
- Outlook

THE T2K EXPERIMENT

Character illustrations by AKIMOTO Yuki @ higgstan.com https://www-he.scphys.kyoto-u.ac.jp/ nucosmos/en/files/NF-pamph-EN.pdf

THE NEAR DETECTOR COMPLEX

IMPORTANT FOR OSCILLATION

Lukas Koch

- Cross sections have direct influence on current oscillation measurements
 - Big part of syst. Uncertainties of T2K δ_{CP} measurement
- Will need to constrain further as cross section models evolve to reach future physics goals @ Hyper-Kamiokande

25/08/23

	1-Ring μ			1-Ring e		
Error source	ν	$\overline{\mathbf{v}}$	ν	$\overline{\nu}$	v 1 d.e	v / v
Flux and (ND unconstrained)	14.3	11.8	15.1	12.2	12.0	1.2
cross-section (ND constrained)	3.3	2.9	3.2	3.1	4.1	2.7
SK Detector	2.4	2.0	2.8	3.8	13.2	1.5
SK FSI + SI + PN	2.2	2.0	3.0	2.3	11.4	1.6
Nucleon Removal Energy	2.4	1.7	7.1	3.7	3.0	3.6
$\sigma(u_e)/\sigma(\overline{ u}_e)$	0.0	0.0	2.6	1.5	2.6	3.0
$ m NC1\gamma$	0.0	0.0	1.1	2.6	0.3	1.5
NC Other	0.3	0.3	0.2	0.3	1.0	0.2
$\sin^2 \theta_{23}$ and Δm_{21}^2	0.0	0.0	0.5	0.3	0.5	2.0
$\sin^2 \theta_{13}$ PDG2018	0.0	0.0	2.6	2.4	2.6	1.1
All Systematics [%]	5.1	4.5	8.8	7.1	18.4	6.0

[Phys. Rev. D 103, 112008 (2021)]

Recent official results

THE OFF-AXIS DETECTOR ND280

Lukas Koch

- Most important bits today:
- FGD (Fine Grained Detector)
 - Active CH target
- TPCs (Time Projection Chambers)
 - PID (Particle ID)
 - Momentum
- Magnet

25/08/23

SMRD

Downstream

ECAL

UA1 Magnet Yoke

CHARGED CURRENT COHERENT ON C @ ND280

• Update of 2016 v_{μ} measurement

25/08/23

- Reduced uncertainties → Better constrain of oscill. background
- Compatible with both Berger Sehgal (NEUT) and Rein Sehgal (GENIE)

Lukas Koch

T2K v on ¹²C (2022)

T2K v. on 12C (2016)

CHARGED CURRENT COHERENT ON C @ ND280

• Our first anti- v_{μ} measurement

25/08/23

- Compatible with Berger Sehgal (NEUT)
 - Rein Sehgal not excluded (GENIE)

Lukas Koch

THE ON-AXIS DETECTOR INGRID

- Standard modules for beam monitoring
 - Actually span off axis-angles
- Proton module for cross sections
 - On-axis
 - PID via dE/dx
 & track length Pre-background-red
 - Momentum by track length

25/08/23

Lukas Koch

COMBINED ON-OFF-AXIS CHARGED CURRENT 0 PIONS

- INGRID on-axis
- ND280 off-axis
- No charged pions in final state
- Combined fit, fully correlated result for two fluxes
- Differential in muon kinematics
- 70 XSEC bins
 - 58 ND280 12 INGRID
 - All models insufficient

25/08/23

0.5

Data

 $\chi^2 = 141.04$

 $\chi^2 = 116.26$

 $\chi^2 = 135.69$

Lukas Koch

0.6

COMBINED ON-OFF-AXIS CHARGED CURRENT 0 PIONS

[arXiv:2303.14228]

- INGRID on-axis
- ND280 off-axis
- No charged pions in final state
- Combined fit, fully correlated result for two fluxes
- Differential in muon kinematics
- 70 XSEC bins
 - 58 ND280 12 INGRID
 - All models insufficient

25/08/23

ND280	INGRID	Joint	
136.34	18.21	158.71	
106.46	11.46	116.26	
194.88	14.36	209.18	
158.71	9.98	170.93	
122.74	15.68	137.02	
125.88	12.75	141.04	al<
121.57	11.13	135.38	nin
138.86	12.46	155.68	relir
141.40	12.80	156.05	Ē
125.50	14.45	135.69	T2F
	ND280 136.34 106.46 194.88 158.71 122.74 125.88 121.57 138.86 141.40 125.50	ND280INGRID136.3418.21106.4611.46194.8814.36158.719.98122.7415.68125.8812.75121.5711.13138.8612.46141.4012.80125.5014.45	ND280INGRIDJoint136.3418.21158.71106.4611.46116.26194.8814.36209.18158.719.98170.93122.7415.68137.02125.8812.75141.04121.5711.13135.38138.8612.46155.68141.4012.80156.05125.5014.45135.69

Squared Mahalanobis distances (χ^2)

WAGASCI + Boby

INGRID

Lukas Koch

COMBINED ON-OFF-AXIS CHARGED CURRENT 0 PIONS

- INGRID on-axis
- ND280 off-axis
- No charged pions in final state
- Combined fit, fully correlated result for two fluxes
- Differential in muon kinematics
- 70 XSEC bins
 - 58 ND280 12 INGRID
 - All models insufficient

25/08/23

[arXiv:2303.14228]

Lukas Koch

Data NuWro 21.09 LFG+Martini $\chi^2 = 155.68$ NuWro 21.09 LFG+Nieves $\chi^2 = 141.04$ NuWro 21.09 LFG+SuSA $\chi^2 = 135.38$

Most tension in onaxis, forward-going, low- to mediummomentum region

Consistent with other results

Coming soon

INTERMEDIATE ANGLE WAGASCI & BABYMIND

- CH and water target WAGASCI
- CH target Proton Module (from INGRID)
- Muon spectrometer BabyMIND
- Muon Range Detectors (MRD)

INTERMEDIATE ANGLE CHARGED CURRENT 0 PIONS

- No charged pions in final state
- Complex detector geometry
- Complex acceptance
- Overall efficiency of ~20% and purity of 50% 60% (depending on sample)

 $\nu_{\mu} + \mathbf{A} \to \mu^{-} + 0\pi^{\pm} + \mathbf{X}$

NGRID NGRID NGRID NGRID NGRID SCOCCECE SCOL SOONNO SCOCCECE SCOCCECE SCOL SOONNO SCOCCECE SCOCCECECE SCOCCECE SCOCCECE SCOCCECE SCOCCECE SCOCCECE SCOCECE

FUTURE: COMBINE ALL DETECTORS

Lukas Koch

- Work ongoing to harmonize analyses of different detectors
 - Currently all use separate softwares
 - Minimise friction of combined analyses
- Aim: combine data of all angles, targets, interaction topologies
 - Maximise use of data
 - Disentangle flux & cross sections
 - Test & develop models

KAONS @ **ND280**

- Kaons are important for proton decay searches at SK and HK
- First Kaon production measurement at T2K

0.35

0.25

0.2

0.15

0.1

0.05

25/08/23

Efficiency

FT2K

0.3 Work In

0.4

0.5

0.6

0.7

0.8

0.9

p^{true} (GeV/c)

EProgress

• Efficiency ~15%, Purity ~45%

w/o phase-spce w/ μ and K⁺ phase-spce

CC-1K⁺ generated signal CC-1K⁺ selected signal FT2K

EWork In

EProgress

10

Lukas Koch

OUTLOOK

- Better integration of all detectors
 - Harmonized software
 - More combined measurements
 - Correlate all the things!
- Many measurements in the pipeline
 - $\nu_{\mu}CC1K^{\scriptscriptstyle +}$ on CH @ ND280
 - CC0 π on water and CH @ Wagasci
 - NC1 $\pi^{_{0/+}}$ on CH/H_20 @ ND280
 - (anti-) $\nu_{\mu}CC1\pi^{+(-)}$ on CH/H₂0 @ ND280
- Detector upgrade happening as we speak
 - Better coverage of high angles
 - Neutron kinematics

25/08/23

- [See] [these] [previous] [talks]

Lukas Koch

CC COH DETAILS

- ν: 1.1e21 POT
- Anti ν: 8.2e20 POT
- Signal
 - P_mu > 200 MeV/c
 - P_pi > 200 MeV/c
 - $\cos(\text{theta}_{mu}) > 0.8$
 - $\cos(\text{theta_pi}) > 0.6$
- Efficiency: 47% (30%)

Lukas Koch

• Purity: 42%

CC 0PI DETAILS

- ND280
 - 11.5e20 POT
 - Pur: 63% 87%
 - Eff: 10% 75%
- INGRID

- 6.0e20 POT
- Pur: 63%
- Eff: 5% 35%

CC OPI INGRID EFFICIENCY

CC OPI INGRID EVENT DISTRIBUTIONS

CC 0PI ND280 EFFICIENCY

dia -

25/08/23

Lukas Koch

26

GU

CC OPI ND280 EVENT DISTRIBUTIONS

Lukas Koch

27

CC 0PI ND280 EVENT DISTRIBUTIONS

Lukas Koch

25/08/23

CC OPI ND280 EVENT DISTRIBUTIONS

25/08/23 Lukas Koch 29 22 13

KAON DETAILS

25/08/23

• Kaon possible decay channel of proton $p \to K^+ \bar{\nu}$

Lukas Koch

30

• Atmospheric neutrino backgrounds

$$-$$
 NC $\nu_{\mu}p \rightarrow \nu_{\mu}K^{+}\Lambda^{0}$

$$- \ CC \quad \nu_{\mu}N \rightarrow \mu^{-}K^{+}N$$