Experimental proof of principle of the Neutrino Tagging technique at NA62 Project-ANR-19-CE31-0009

Bianca De Martino

On behalf of the NA62 collaboration

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

NuFact 2023

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Outline

Introduction

- 2 The NA62 experiment
- 3 Analysis strategy

Offline selection

- 5 Event yield background and signal
- 6 Revealing signal region content

Bianca De Martino Experimental proof of principle of the Neutrino Tagging technique at NA62 NuFact 2023 1 / 18

(B) < B)</p>

Neutrino Tagging

- Neutrino Tagging: method for accelerator based neutrino experiments
- Instrument a beam line with spectrometers
- Kinematically reconstruct each ν originating from a $\pi^+ \rightarrow \mu^+ \nu_{\mu}$ decay \rightarrow *tagged* ν
- Associate interacting ν at Far Detector to its tagged ν
- Main advantages:
 - energy resolution < 1%, no energy scale
 - improved beam knowledge

Neutrino Tagging - Motivation

- At a tagged Short Base Line Experiment: (see L. Munteanu's talk)
 - precise flux knowledge \rightarrow measure at 1% level ν_e x-sec and ν_{μ} differential x-sec
 - tagged ν energy determined independently of its interaction \rightarrow refine interaction models
- These measurements would strongly improve the physics potential of upcoming LBLE:
- At a tagged Long Base Line Experiment:
 - setup with a natural water Cherenkov detector (like KM3NeT/ORCA) would allow to measure δ_{CP} with unprecedented precision.
- Both SBL and LBL are being studied, together with ENUBET, by the Physics Beyond Colliders (PCB) group @ CERN

Experimental proof of principle of the Neutrino Tagging technique at NA62

NuFact 2023 3 / 18

The NA62 experiment

Bianca De Martino Experimental proof of principle of the Neutrino Tagging technique at NA62 NuFact 2023 3 / 18

イロト イロト イヨト イヨ

12

Feasibility study of tagging - NA62

- NA62 is a fixed-target experiment in the North Area of the SPS at CERN
- NA62's main purpose is the measurement of the branching ratio of the $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ rare decay (SM signal Br = $(8.4 \pm 1.0) \cdot 10^{-11}$)
- Desirable features for v tagging proof of principle
- NA62's high intensity kaon beam at 75 GeV/c delivers a nominal rate of $O(10^{12})K^+$ decays per year

Tagging at NA62

• Goal: search for $K^+ \rightarrow \mu^+ + \nu_{\mu} (K \mu \nu)$ with:

- *K*⁺ reconstructed by tracker
- μ⁺ reconstructed by tracker
- v interacting in the EM calorimeter (20ton LKr)
- v interaction probability: $O(10^{-11})$
- Interaction channel: CC-DIS: $\nu \rightarrow$ shower + μ^- ۲
- Exploit μ^+ , shower and μ^- for triggering strategy

Experimental proof of principle of the Neutrino Tagging technique at NA62

- KTAG: differential Cherenkov counter equipped with 8 arrays of photodetectors, identifies the *K*⁺ in the beam
- Beam: 750MHz over 3s spills
- Composition: **6%** *K*⁺, 70% π⁺, 23% p

(ロ)

Bianca De Martino	Experimental proof of principle of the Neutrino Tagging technique at NA62	NuFact 2023	6 / 18

• GigaTracKer (GTK): silicon pixel spectrometer with 130 ps hit time resolution, reconstructs time and 4-momentum of incoming beam particles

• STRAW: straw tube spectrometer that reconstructs the properties of charged particles produced in K decays

• LKr: electromagnetic calorimeter filled with about 9000 l of liquid Krypton at 120 K

• MUV1 and 2: 66 ton hadron calorimeter

• MUV3: 50 mm thick scintillator tiles, placed behind LKr, MUV1 and 2, and an iron wall, used for muon ID

Bianca De Martino	Experimental proof of principle of the Neutrino Tagging technique at NA62	NuFact 2023	6 / 18

▲□▶▲@▶▲≣▶▲≣▶ 星間 のなび

Analysis strategy

イロト イポト イヨト イヨト

1 = 990

Analysis strategy

- Backgrounds assessed with data driven method on side bands; 2 background sources:
 - Overlaid $K\mu\nu$: $K \rightarrow \mu\nu$ with extra in-time activity \rightarrow studied in side bands of d_{LKr}
 - Mis-reconstructed kaon decays → studied in side bands of m²_{miss}.

Bianca De Martino Experimental proof of principle of the Neutrino Tagging technique at NA62 NuFact 2023 7 / 18

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Analysis strategy

- 2022 data sample has been analyzed
- Expected event rate:

$$N_{\text{signal}}^{exp} = N_{K^+} \cdot \mathcal{B}(K^+ \to \mu^+ \nu_{\mu}) \cdot P_{\text{int,LKr}} \cdot \epsilon_{\text{signal}}$$

• Use $K \rightarrow \mu \nu$ (no ν interaction) decays as normalization sample:

$$N_{K^+} = \frac{N_{\text{norm}}}{\epsilon_{\text{norm}} \cdot \mathcal{B}(K^+ \to \mu^+ \nu_{\mu})}$$

$$N_{\text{signal}}^{exp} = N_{\text{norm}} \cdot \frac{\epsilon_{\text{signal}}}{\epsilon_{\text{norm}}} \cdot P_{\text{int,LKn}}$$

- Signal and normalization common efficiency terms cancel in the ratio
- Signal efficiency estimated thanks to a MC sample (GENIE) ^a

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

^aThanks to Marco Roda, Costas Andreopoulos for helping us implementing it in NA62 SW

Offline selection

- Need a **very** clean signal → strict selection
- Large background rejection factor

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ショー ション

Common selection - signal and normalization

- Single positively charged track matched to LKr, MUV1, MUV2 and MUV3 candidates
- μ^+ PID
- photon rejection
- v extrapolated position inside LKr acceptance

ν interaction offline selection

- Step 1: v interaction associated to activity in LKr, MUV1, MUV2, MUV3 in time and space
- Step 2: Extra activity rejection
- Step 3: Energy requirements
- Step 4: Interaction topology

Interaction topology

Bianca De Martino Experimental proof of principle of the Neutrino Tagging technique at NA62 NuFact 2023 11 / 18

イロト イポト イヨト イヨト

1 = 990

Signal and background yields

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ショー ション

Background assessment

Background pollution estimated with data-driven method, in side bands of SR

$$\begin{split} N^{exp}_{bkg}(Mis - reco~K^+~) &= 0.0014 \pm 0.0007_{stat} \pm 0.0002_{syst}. \\ N^{exp}_{bkg}(OV~K\mu\nu) &= 0.04 \pm 0.02_{stat} \pm 0.01_{syst}. \end{split}$$

Bianca De Martino Experimental proof of principle of the Neutrino Tagging technique at NA62 NuFact 2023 12 / 18

Variables for signal yield computation

•
$$P_{int,LKr} = (6.0 \pm 0.1_{syst}) \cdot 10^{-11}$$

• $N_{norm} = (1.49 \pm 0.02_{syst}) \cdot 10^{11}$ from $K \mu \nu$ event yield

•
$$\epsilon_{signal} = (2.55 \pm 0.15_{stat} \pm 0.04_{syst})\%$$

$N_{\text{signal}}^{exp} = 0.228 \pm 0.014_{stat} \pm 0.011_{syst}$

Bianca De Martino Experimental proof of principle of the Neutrino Tagging technique at NA62 NuFact 2023 13 / 18

Summary

• In 2022 data sample:

$$\begin{split} N_{\text{signal}}^{exp} &= 0.228 \pm 0.014_{stat} \pm 0.011_{syst}, \\ N_{bkg}^{exp} &= 0.0014 \pm 0.0007_{stat} \pm 0.0002_{syst}, \\ N_{bkg}^{exp} (OV K \mu \nu) &= 0.04 \pm 0.02_{stat} \pm 0.01_{syst}. \end{split}$$

 $\begin{array}{l} Probability \ for \ total \ event \ yield \\ N_{events}^{exp} = 0.2694 \end{array}$

- for 0 data events p = 0.7638
- for 1 data event p = 0.2058
- for 2 data events p = 0.0277.

- Background NA62 preliminary Signal NA62 preliminary 0.025 m^2_{miss} [GeV²/c⁴] Observed events in side bands Observed events in side bands 12mm / 0.0008 GeV²/ 0.02 0.02 0.015 - 0.01 0 ب 1_{0.005} لک -0.02 100 200 300 0 100 200 300 d_{LKr v} [mm] d_{LKr v} [mm] Bianca De Martino Experimental proof of principle of the Neutrino Tagging technique at NA62 NuFact 2023 14 / 18
- Signal-to-noise: 5.5

Revealing signal region content

- Results approved for unblinding by NA62 Collaboration
- Unblinding on July 27, 2023

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ショー ション

Opening the box in signal region

Two events are found in signal region!!

Bianca De Martino Experimental proof of principle of the Neutrino Tagging technique at NA62 NuFact 2023 15 / 18

イロト イポト イヨト イヨト

12

Event Display - Event A

Bianca De Martino

Experimental proof of principle of the Neutrino Tagging technique at NA62

NuFact 2023 16 / 18

Event Display - Event B

NuFact 2023 17 / 18

Conclusions

- NA62 experiment has been exploited as a miniature tagged experiment to demonstrate feasibility of the technique using $K^+ \rightarrow \mu^+ \nu_{\mu}$
- Blind analysis performed, expected $N_{signal}^{exp} = 0.228 \pm 0.014_{stat} \pm 0.011_{syst}$ signal events
- Signal-to-noise ratio 5.5
- 2 events found in signal region upon opening the box
- Crucial first step achieved toward the design of a full scale tagged experiment.

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ショー ション

Backup

Bianca De Martino Experimental proof of principle of the Neutrino Tagging technique at NA62 NuFact 2023 19 / 18

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Signal yield

 $N_{K\mu\nu} = N_{K\mu\nu}^{mask2-ext} \cdot D_{min-bias}^{mask2} = (1.49 \pm 0.02_{syst}) \cdot 10^{11} \text{ from normalization event yield}$ $N_{K\mu\nu\ast}^{exp} = N_{K\mu\nu} \cdot A_{K\mu\nu\ast}^{int} \cdot \epsilon^{RV} \cdot \epsilon_{E5}^{sel} \cdot \epsilon_{MOQX}^{sel} \cdot \epsilon_{L1}^{sel} \cdot P_{int,LKr}$ $= 0.228 \pm 0.014_{stat} \pm 0.011_{syst}$ (1)

Contribution	Value and uncertainty	
P _{int,LKr}	$(6.0 \pm 0.1_{syst}) \cdot 10^{-11}$	
$N_{K\mu u}$	$(1.49 \pm 0.02_{syst}) \cdot 10^{11}$	
$A_{K\mu\nu*}^{int}$	$0.0421 \pm 0.0025_{stat} \pm 0.0015_{syst}$	
ϵ^{RV}	$0.816\pm0.014_{syst}$	
$\epsilon_{K\mu\nu*}^{MOQX}$	$0.976 \pm 0.007_{stat} \pm 0.001_{syst}$	
$\epsilon_{K\mu\nu*}^{E5}$	$0.82\pm0.01_{stat}\pm0.01_{syst}$	
$\epsilon_{Kuv*}^{L1/sel}$	$0.932 \pm 0.002_{stat}$	

Bianca De Martino Experimental proof of principle of the Neutrino Tagging technique at NA62 NuFact 2023 20 / 18

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶ ◆○ ●

Trigger line

- Dedicated trigger line deployed in 2021, refined in 2022
- Trigger line selection: single downstream track before LKr with two muons at MUV3 with total energy deposit > 5GeV in LKr

A B > A B >

12

MC sample

- K^+ forced to decay in $\mu^+ \nu_{\mu}$ at z = 102.425-180.0 m
- ν forced to interact in the LKr active volume
- ν interaction simulated with GENIE using CC-QE, RES, DIS
- Interaction final state and probability passed from GENIE to NA62MC
- Average interaction probability: 5 · 10⁻¹¹
- To account for final state modeling uncertainties, two extra samples are produced with the ν energy used to generate the final state biased by ±10% to estimate systematic uncertainties

Neutrino Tagging - Implementation

- Implemented by instrumenting a beam line with beam spectrometers
- Upcoming tracker capabilities: $O(10^{12})\pi/s^1$, way below rate of standard LBL $O(10^{18})\pi/s$
- Handles to limit particle flux:
 - slow extraction
 - narrow band (π momentum selection)
 - beam transverse size
- Unambiguous pairing between tagged and interacting $\boldsymbol{\nu}$

¹A. Lai et al., First results of the TIMESPOT project on developments on fast sensors for future vertex detectors, $(\Box \Rightarrow \langle \mathcal{B} \Rightarrow \langle \mathbb{R} \Rightarrow \langle \mathbb{R} \Rightarrow \langle \mathbb{R} \rangle \Rightarrow \langle \mathbb{R} > \langle$

Bianca De Martino Experimental proof of principle of the Neutrino Tagging technique at NA62 NuFact 2023 23 / 18

Signal candidates properties

Variable	Event A	Event B
d _{LKrv}	31.9 mm	27.0 mm
m_{miss}^2	$-0.00088{\rm GeV}^2/c^4$	$-0.0015{ m GeV}^2/c^4$
$d\phi_{LKr-MUV3}$	3.29 rad	3.24 rad
$E_{\mathbf{v}}$	52.1 GeV	57.5 GeV
p_{μ^+}	25.25 GeV/c	18.74 GeV/c
p_{K^+}	77.3 GeV/c	76.2107 GeV/c
E _{LKr in time}	13.36 GeV	7.67 GeV
E _{MUV1} in time	9.85 GeV	10.90 GeV
E _{MUV2} in time	2.48 GeV	2.80 GeV
E_{μ^-}/E_{ν}	0.68	0.78
n _{KTAG}	28	17
Z _{vtx}	161.2 m	157.7 m
x, y at MUV3 μ^-	(550, 770) mm	(330, 770) mm
x, y at MUV3 μ^+	(-330, -770) mm	(-550, -990) mm

Table: Features of the two signal candidates found in the signal region.

Bianca De Martino Experimental proof of principle of the Neutrino Tagging technique at NA62 NuFact 2023 24 / 18

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨト ショー ション