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LBNF Beamline
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* Proton beam extracted from Fermilab’s Main Injector in range of 60 — 120 GeV every 0.7 — 1.2 sec with pulse duration of 10 ys

* Protons per cycle:
-1.2 MW era: 7.5x10'3
-2.4 MW era: (1.5-2.0)x10'4
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Target Hall Shield Pile Layout — Optimized Design
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Neutrino Beam Timing
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Neutrino Beam Timing

With simulated data of
LBNF beam in Forward
Horn Current Mode

Parent Hadron Energy [GeV]
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Arrival time difference b/w neutrinos from relativistic hadrons &
neutrino from hadron of energy E
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Neutrinos at Near Detector
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Relative neutrino arrival times versus neutrino energies for all
neutrinos with simulated data of the LBNF beam
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Neutrinos at Near Detector
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« Simulation of neutrino energy distribution (the outer dark blue envelope)
* Overlaid with fluxes corresponding to increasingly later binned time cuts
+ 250 ps bunch width
* 100 ps detector timing in 200 ps bins at Near Detector
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Neutrinos at Near Detector
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Timing to Separate Out Neutrino Family Types, Parent Hadron
Components

Counts [Arb. Units]
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Counts [Arb. Units]
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Parent hadron: pion only Parent hadron: kaon only Parent hadron: kaon only
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Motivation Number of - —
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o Neutrino energy spectra different at ND & FD, fluxes
different due to oscillation

o Need to disentangle initial neutrino flux &
reaction cross sections, detector effects o Cross sections highly uncertain due to strong energy

— each energy dependent dependence
o N sensitive to nuclear effects — FSI, missing energy

o Erec = Eiue depends on poorly understood neutrino
interaction models

o Evenif ND and FD were the same, flux differences
mean that there is no cancellation between the two
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DUNE PRISM

Detector Movement

« Prismatic approaches look at full flux & sample multiple off-axis angles (Furthest)

in same detector s

— by changing off-axis angle of detector, sample a continuously
changing energy spectrum

+ Allows to make cross-section measurements in different energy
distributions:
o same detector
o same target material as FD
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PRISM Complementarity of Stroboscopic Approach

Flux components at Near Detector to
perform PRISM fits

Top left: PRISM off-axis and alternate
horn current (280 kA) fluxes

Top right: Stroboscopic fluxes

Bottom left: Ratio of the PRISM fluxes and
the 280kA flux to reference flux

Bottom right: Ratio of the stroboscopic
fluxes to reference flux
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PRISM Complementarity of Stroboscopic Approach
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PRISM Complementarity of Stroboscopic Approach
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PRISM fit with PRISM on and off-axis fluxes only, no altHC

flux
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Regularization Strength: 7.000000e-03
NAIHCBIns: 0

NStroboBins: 8

NPRISMBins: 53

— Target Flux
— PRISM Fit

1
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PRISM fit with PRISM off-axis fluxes only,
stroboscopic on-axis fluxes and no altHC

2% Fermilab



PRISM Complementarity of Stroboscopic Approach

BeamEspect_vmu_under BeamEspect_vmu_bin2

Regularization Strength: 5.000000e-03 - Regularization Strength: 1.000000e-02
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PRISM fits to oscillated Far Detector time bins
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PRISM Complementarity of Stroboscopic Approach

A reconstruction independent observable is needed to select
different energy spectrums within a beam

» One way is to do PRISM

» PRISM Near Detector program can be further enhanced with a fast Near Detector

» Stroboscopic approach can enhance PRISM’s default program by providing Far Detector
oscillated time slices

17
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Application of Stroboscopic Approach

Application of stroboscopic approach requires:

Synchronization b/w time at

Creation of short (O(100 ps)) detector & time of bunch-by-bunch
proton bunch length proton

v

Detectors with fast timing to get
equivalent time resolution
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Application of Stroboscopic Approach
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Reference: https:/arxiv.org/pdf/1904.01611.pdf
« Energy and time correlation of neutrinos becomes smeared when proton bunch has a non-zero time-width

At ~1 ns bunch lengths typical of Fermilab neutrino facilities, correlation b/w timing and energy is mostly
washed out except for a small, low-statistics tail
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https://arxiv.org/pdf/1904.01611.pdf

Creation of Shorter Proton Bunches

Re-bunching beam proposed in: https://arxiv.org/pdf/1904.01611.pdf

O(1) ns bucket every 20 ns - 0(100) ps bucket every 2 ns

1ns

— | «—
F 20 ns I

100 ps

R R NN REnAnY

2ns

*Superimpose a higher frequency harmonic on top of bunch structure: 10xharmonic, going from 53.1 MHz to 531 MHz
*Total number of protons stays same
*Requires adding a Superconducting RF Cavity

Addition of a new cavity, requires a significant investment
2% Fermilab
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Creation of Shorter Proton Bunches

 Use bunch rotation at Ml to create Narrow Bunches

Adiabatic excitation of longitudinal bunch shape oscillation in MI:
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Longitudinal phase distribution with (right) &

without (left) bunch rotation with simulated data generated with BLonD
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Creation of Shorter Proton Bunches

 Use bunch rotation at Ml to create Narrow Bunches

Snap Bunch Rotation in MI:
Minimal bunch length of 350 ps occurs ~ 1437 revolution
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Plot courtesy:
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photodetectors

Detectors with fast timing

23

LBNF Near and Far detectors can be used to divide
neutrino flux by neutrino arrival time by

Creating short proton bunches in M| - if detectors have
a time resolution like proton bunches at target

Liquid Argon TPCs as currently conceived are slow
detectors
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photodetectors

From electron TPC data, liquid Argon-based
detectors precisely re-construct each event in

space

Use reconstructed track from electron drift to
simulate detected time and position of
Cherenkov photons

Only one parameter, neutrino event time
needs to be fitted for

For 50-100 ps precision timing in liquid Argon,
prompt light must be detected precisely,
Cherenkov light at visible wavelengths has
properties required

Possible option for photodetection - mirror top,
bottom, sides, and place photodetectors on
end caps
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https://arxiv.org/abs/2004.00580
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ANNIE Detector

24

ANNIE provides a first demonstration of stroboscopic
approach on neutrinos from BNB beam

Detecting time-slicing effect should be possible, even with 1
ns bunches, however a smaller bunch length is better

Motivates applying bunch rotation in Booster

ANNIE running with LAPPDs deployed into neutrino beam
by 2022

Effort to synchronize ANNIE detector to BNB beam with time
resolution of ~300 ps is currently missing

White Rabbit system can provide time
precision down to less than one ns over many kilometers
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I inclusive BNB flux
I >2nsec after beam start
>3 nsec after beam start
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Synchronization b/w time at detector &
time of bunch-by-bunch proton

Synchronization tools will be useful for future
detector experiments with fast timing

2% Fermilab



Stroboscopic Muons

Neutrinos & muons have a similar time-energy
correlation from pion decay

Muon momentum spectra can be measured
stroboscopically

Bin muons in same time intervals as neutrinos,
create muon samples to normalize neutrino flux in
each time bin

By placing muon monitors before full absorbers
installed, measure muon momentum spectrum
during a low-intensity run on LBNF beamline — psec
timing

Reference:https://arxiv.org/pdf/1904.01611.pdf,
https://indico.fnal.gov/event/58470/

25 8/18/23 Sudeshna | NuFact 2023

Counts [Arb. Unit]

10°

10"

Sml URLRRLLL B LR LU SRR R B

PR N A il a1 i .
7556 760 765 770 775 780
Muon Time [ns] before Absorber

Muon time before absorber

888832
goasas®

“8388

#BR2T

33555
AAAAA

Counts [Arb. Unit]
=

B b
P

b
25
AV
—-3

LLLLL IR R

S

Muon momenta in each time bin after absorber

2% Fermilab



Advantages

 With stroboscopic approach, PRISM Near Detector program can be further
enhanced with a fast Near Detector

* Opens possibility of using PRISM’s default program by providing Far Detector
oscillated time slices

» Together with precision timing in beam delivery and time synchronization tools
developed, first proof of principle can be performed with ANNIE

* An excellent opportunity here to think about fast timing for LAr-TPCs

Neutrinos & muons will play a key role in future neutrino experiments

Stroboscopic techniques allow us to exploit neutrino & muon beams to
their fullest potential
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