Impact of light sterile neutrino at the long-baseline experiment options at KM3NeT Phys.Rev.D 107 (2023) 7, 075039

Rudra Majhi University of Hyderabad, Hyderabad. Nabarangpur College, Nabarangpur

August 25, 2023

Rudra Majhi

Nabarangpur College, Nabarangpur

NuFACT 2023

August 25, 2023

1/28

Table of Contents

- Introduction
- Sterile Neutrino
- Simulation Details
- 4 Results

3 N 3

INTRODUCTION

イロト イヨト イヨト イヨト

æ

Introduction

- Neutrinos are the most elusive particle postulated by Pauli in 1930.
- In last two decades, several dedicated experiments have observed the flavor transition property of neutrinos while propagating.

- Neutrino Oscillation confirms the neutrino mass and mixing.
- Also resolve the Solar and Atmospheric neutrino Anomalies.
- Neutrino mass states (ν₁, ν₂, ν₃) are related to flavour states by Unitary mixing matrix.

$$|\nu_{\alpha}\rangle = \sum U_{\alpha i} |\nu_{i}\rangle \quad \alpha = e, \mu, \tau, \quad i = 1, 2, 3$$
Flavour States
Rudra Maihi
Nabarangpur College, Nabarangpur
August 25, 2023
4/2

 The Mixing Matrix is Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix

$$\begin{split} U_{\rm PMNS} &= R(\theta_{23}) O(\theta_{13}, \delta_{13}) R(\theta_{12}), \\ \text{where} \quad O(\theta_{13}, \delta_{13}) &= \begin{pmatrix} \cos \theta_{13} & \sin \theta_{13} e^{-i\delta_{13}} \\ -\sin \theta_{13} e^{i\delta_{13}} & \cos \theta_{13} \end{pmatrix}, \\ R(\theta) &= \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \end{split}$$

140111 3.1 (2021)

		Normal Ordering (best fit)		Inverted Ordering ($\Delta \chi^2 = 2.6$)	
		bfp $\pm 1\sigma$	3σ range	$bfp \pm 1\sigma$	3σ range
without SK atmospheric data	$\sin^2 \theta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.269 \rightarrow 0.343$	$0.304^{+0.012}_{-0.012}$	$0.269 \rightarrow 0.343$
	$\theta_{12}/^{\circ}$	$33.44^{+0.77}_{-0.74}$	$31.27 \rightarrow 35.86$	$33.45_{-0.74}^{+0.77}$	$31.27 \rightarrow 35.87$
	$\sin^2 \theta_{23}$	$0.573^{+0.018}_{-0.023}$	$0.405 \rightarrow 0.620$	$0.578^{+0.017}_{-0.021}$	$0.410 \rightarrow 0.623$
	$\theta_{23}/^{\circ}$	$49.2^{+1.0}_{-1.3}$	$39.5 \rightarrow 52.0$	$49.5^{+1.0}_{-1.2}$	$39.8 \rightarrow 52.1$
	$\sin^2\theta_{13}$	$0.02220\substack{+0.00068\\-0.00062}$	$0.02034 \to 0.02430$	$0.02238\substack{+0.00064\\-0.00062}$	$0.02053 \to 0.02434$
	$\theta_{13}/^{\circ}$	$8.57^{+0.13}_{-0.12}$	$8.20 \rightarrow 8.97$	$8.60^{+0.12}_{-0.12}$	$8.24 \rightarrow 8.98$
	$\delta_{\rm CP}/^{\circ}$	194^{+52}_{-25}	$105 \to 405$	287^{+27}_{-32}	$192 \to 361$
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.515\substack{+0.028\\-0.028}$	$+2.431 \rightarrow +2.599$	$-2.498\substack{+0.028\\-0.029}$	$-2.584 \rightarrow -2.413$

• Precise measurement of neutrino oscillation parameters.

* JHEP 09 (2020) 178
 [arXiv:2007.14792] & NuFIT 5.1
 (2021), www.nu-fit.org.

< 1 k

Rudra Majhi

Nabarangpur College, Nabarangpur

5/28

Unknowns of 3 ν framework

Mass Hierarchy.

- $\Delta m_{31}^2 > 0$ (Normal Hierarchy) $m_3 >> m_2 > m_1$
- $\Delta m_{31}^2 < 0$ (Inverted Hierarchy) $m_2 > m_1 >> m_3$
- * R. N. Mohapatra et al., arXiv:hep-ph/0510213

- Absolute scale of neutrino mass is unknown to us.
- Nature of Neutrinos: Dirac or Majorana type?

Unknowns of 3 ν framework

C[Particle] = Antiparticle Parity changes the helicity of a state.

Is
$$P(\nu_{\alpha} \to \nu_{\beta}) \neq P(\overline{\nu}_{\alpha} \to \overline{\nu}_{\beta})$$
?

• CP non-invariance comes from δ_{CP} phase in the Leptonic mixing matrix U.

- CP violation can explain the matter-anti matter asymmetry in universe.
- *A. S. Joshipura et al. JHEP 08 (2001), 029

Rudra Majhi

Nabarangpur College, Nabarangpur

August 25, 2023

Unknowns of 3 ν framework

Octant of θ_{23}

• Atmospheric mixing angle (θ_{23}) deviates from maximum-mixing value 45°

 $\theta_{23} < 45^{\circ}$ Lower Octant (LO) $\theta_{23} > 45^{\circ}$ Higher Octant (HO)

- Are there more than 3 neutrino mass eigenstates? (Do sterile neutrinos exit?)
- Do neutrinos break the CPT and Lorentz invariance?
- Are there Non-Standard Interaction (NSI) effects?

Long-Baseline experiments

- The unknowns in neutrino sector can be studied through Long Baseline neutrino oscillation experiment.
- Earth matter effect in Long Baseline experiment will help to study the unknowns.
- It can give new signals of beyond standard model.
- * M. Freund, Phys. Rev. D 64 (2001) 053003, arXiv:hep-ph/0103300.

STERILE NEUTRINO

æ

Introduction to Sterile Neutrino

LSND

- Objective:- $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ detection
- Detector was at 30 m. and sensitive to $\Delta m^2 \approx 1.0 eV^2$ An excess of 3.8 σ in $\bar{\nu_e}$ event.
- Best fit Oscillation $(\sin^2(2\theta), \Delta m^2) =$ $(0.003, 1.2eV^2)$

MiniBooNE

- Baseline:- 500 m.
- Objective:- $\nu_{\mu} \rightarrow \nu_{e}$ and $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$
- $3.4\sigma(2.8\sigma)$ excess event in $\nu_e(\bar{\nu_e})$ appearance.

* K. N. Abazajian et al., arXiv:1204.5379 [hep-ph]

⁶ M. A. Acero et al., arXiv:2203.07323.

Reactor Anomaly

- Shows 3% increase in anti neutrino fluxes.
- Overall 6% will increase.
- Neutrino life time will decrease. Increase in cross section for inverse β -decay.
- Compatible for $\Delta m^2 > 1 eV^2$.

Gallium Anomaly

- Observed events and cross section is smaller than prediction.
- Explanation:- Electron neutrino disappearance at short baseline oscillations.

•
$$\Delta m^2, \sin^2(2\theta) = (2.24eV^2, 0.50)$$

Recent result from MicroBooNE, there is no excess of ν_e events coming from the ν_{μ} beam. See talk by

WG5: Sterile Neutrino Search at MicroBooNE using both the BNB and NuMI Beams by Meghna Bhattacharya.

- LEP Result: Below half of Z Boson mass $N_{\nu} = 3$
 - Sterile neutrinos (ν_s) are neutral lepton, with no ordinary weak interaction except mixing.
 - Some experiments predict existence of 1eV scale sterile neutrino.
 - Consider the 3+1 framework.

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_s \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \end{bmatrix}$$
$$= O(\theta_{34}, \delta_{34}) R(\theta_{24}) O(\theta_{14}, \delta_{14}) R(\theta_{23}) O(\theta_{13}, \delta_{13}) R(\theta_{12})$$

U

-∢ ∃ ▶

• Sterile neutrino oscillation probability for neutrino detector:

$$P_{\mu e}^{\rm ND} = \sin^2 2\theta_{14} \sin^2 \theta_{24} \sin^2 \left(\frac{\Delta m_{41}^2 L}{4E_{\nu}}\right).$$
(1)

• Approximate oscillation probability at far detector in presence of sterile neutrino is

$$P_{\mu e}^{\rm FD} = 4s_{13}^2 s_{23}^2 \sin^2 \Delta_{31}$$

$$+ 8s_{12} c_{12} s_{13} s_{23} c_{23} \sin \Delta_{21} \sin \Delta_{31} \cos (\Delta_{31} + \delta_{\rm CP})$$

$$+ 4s_{13} s_{14} s_{24} s_{23} \sin \Delta_{31} \sin (\Delta_{31} + \delta_{\rm CP} + \delta_{24}).$$
(2)

Simulation Details

æ

Simulation Details

- General Long Baseline Experiment Simulator (GLoBES).
- C-library based software package for simulation of experiments.
- we use snu plugin for implementation of sterile neutrino and NSI.
 * P. Huber et al., Comput. Phys. Commun. 167, 195 (2005)
 - * P. Huber et al., Comput. Phys. Commun. 177, 432 (2007)

DUNE

- Baseline of the experiment is 1300 km.
- Near detector (ND) is at a distance of 574 m.
- Beam power 1.2 MW equivalent to 1.1×10^{21} POT per year with a 40 kt LArTPC detector.
- Run-time: 3.5 yrs.(ν)+3.5 yrs.($\overline{\nu}$). * B. Abi et al., arXiv:2103.04797.

Possible Long Baseline Facility at KM3NeT

Protvino to ORCA (P2O)

- Neutrinos will be produced at U-70 synchrotron located at Protvino, Russia.
- Beam Power: 90 KW, 0.8×10^{20} POT.
- Neutrinos will be detected at the Mediterranean Sea 40 km offshore Toulon, France.
- FD at 2595 km and ND at 320m.

Upgraded P2O (Up P2O)

- Same configuration as P2O except beam power and POT.
- Beam Power: 450 KW, 4×10^{20} POT

Nabarangpur College, Nabarangpur

Protvino to Super-ORCA (P2SO)

- Neutrinos will be detected at Super-ORCA detector at distance of 2595 km away.
- Detector will 10 times more dense than ORCA detector.
- Higher energy resolution capability.
- Beam power corresponds to 450 KW (4×10^{20} POT)

• Run time for all the three configuration is 6 years (3 yrs + 3 yrs)

* J. Hofestädt, et al., PoS ICRC2019 (2020) 911, [arXiv:1907.12983]

* A. V. Akindinov et al., Eur. Phys. J. C 79 (2019), no. 9 758, [arXiv:1902.06083].

Results

<ロト < 四ト < 三ト < 三ト

3

Efect at Probability Level

- Probability at far detector will be averaged out for any particular value of $\Delta m^2_{41}.$
- Probability at near detector (ND) depends upon the sterile oscillation parameters. ND is the best platform to study sterile neutrino.

Figure: Probability as a function of energy.

Results

Constration on sterile oscillation parameter

Rudra Majhi

August 25, 2023

21/28

Hierarchy Sensitivity

Rudra Majhi

August 25, 2023

Octant Sensitivity

CPV Sensitivities

Figure: CPV sensitivities as a function of true δ_{CP} for DUNE, P2O, upgraded P2O (Up P2O), and P2SO experiments.

Rudra Majhi

Nabarangpur College, Nabarangpur

CP Precision

Rudra Majhi

August 25, 2023

25 / 28

CONCLUSION

Rudra Majhi

Nabarangpur College, Nabarangpur

August 25, 2023

イロト イヨト イヨト イヨト

æ

Conclusion

- Options at KM3NeT are more sensitive to the value of Δm^2_{41} is around 10 eV².
- DUNE is more sensitive to the value of Δm_{41}^2 is around 1 eV².
- Inclusion of ND to FD improves the sensitivities for all the long baseline experiment.
- Both P2SO and DUNE have good efficiency to constrain the mixing angles θ_{14} and θ_{24} .
- P2SO gives the best sensitivity for MH.
- Octant and CP sensitivities of P2O and Up P2O are poor compare to DUNE and P2SO.
- DUNE provides slightly better sensitivity than P2SO regarding both CP violation and CP precision.

THANK YOU!

Rudra Majhi

Nabarangpur College, Nabarangpur

August 25, 2023

イロト イヨト イヨト イヨト

æ

Rudra Majhi

Nabarangpur College, Nabarangpur

August 25, 2023

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @