

The 24th International Workshop on Neutrinos From Accelerators (NuFact 2023) Seoul, 21-26 August 2023

Search for a muon electric dipole moment using the frozen-spin technique

Ljiljana Morvaj (PSI), on behalf of the *muEDM@PSI* collaboration

- Muon EDM SM value is many orders of magnitude below current experimental sensitivities
 - \succ Observation of EDM \rightarrow new physics!

- EDM violates parity (P) & time-reversal (T) Under the assumption of CPT => CP violation ► Need BSM CP-violating sources to explain the baryon asymmetry in the Universe
- Magnetic & electric dipole moment (EDM) –
- $\overrightarrow{\mu} = g \frac{e}{2m} \overrightarrow{s}$

• Interaction of a particle spin with EM fields:

Current status of muon EDM

PAUL SCHERRER INSTITUT

Measurement principle

- Muon spin precesses in the presence of $\vec{E} \& \vec{B}$ fields
 - Measure the precession frequency/plane (knowing the fields)

 \rightarrow infer $a_u \& d_u$

- BNL/FNAL
 - ➤"Magic" momentum: 3.09 GeV
- J-PARC

PAUL SCHERRER INSTITUT

≻No *E* field for focusing

Simplifying the measurement

Page 6

- BNL/FNAL
 - ➤"Magic" momentum: 3.09 GeV
- J-PARC

PAUL SCHERRER INSTITU

≻No E field for focusing

• PSI: The frozen spin technique

Apply radial *E* field such that it cancels the g - 2 term

- No EDM:
 - spin frozen to the direction of motion
- EDM:
 - Spin precession only in the plane orthogonal to the plane of motion

Detection technique

Polarized (~95%) μ⁺ produced in pion decays

- Decay e⁺ emitted preferentially in the spin direction
- Count the number of e⁺ in the "up" and "down" detectors
- In the absence of EDM the spin is frozen along momentum direction
 - ➢ no asymmetry
- Non-0 EDM:
 - ➢ spin precession out of the orbit plane
 - build up of the "up-down" asymmetry with time

Experiment layout

- Muons injected through a superconducting (SC) channel
- Fast entrance scintillator triggers magnetic pulse that stops the longitudinal μ^+ motion
- Weakly focusing field for storage
- Thin electrodes provide an electric field (3 kV/cm) for the frozen spin
- Si strip/scintillator detectors for decay e+ tracking

Phased approach

Phase I

- p=28 MeV muons
- Existing solenoid at PSI, max 5 T

Phasa I

Phasa II

- Bore diameter 200 mm
- Length 1 m
- Field measured in 2022 & found suitable for injection

Phase II

- p=125 MeV muons
- Larger bore (up to 900 mm diameter)
- Better spatial and temporal stability

	1 11430 1	T Hube H
	$\pi E1$	$\mu E1$
Muon flux (μ^+/s)	4×10^{6}	1.2×10^8
Channel transmission	0.03	0.005
Injection efficiency	0.017	0.60
Muon storage rate $(1/s)$	2×10^3	360×10^3
Gamma factor γ	1.04	1.56
e^+ detection rate (1/s)	500	90×10^3
Detections per 200 days	8.64×10^9	1.5×10^{12}
Mean decay asymmetry A	0.3	0.3
Initial polarization P_0	0.95	0.95
Sensitivity in one year $(e \cdot cm)$	${<}3\times10^{-21}$	$< 6 \times 10^{-23}$

Muon injection and entrance trigger

• Superconducting injection tube

- Transport muons in a magnetic field-free region into the strong B of the storage solenoid (without them spiraling out due to the Magnetic Mirror Effect)
- ➤Testing different materials

Muon injection and entrance trigger

• Superconducting injection tube

- Transport muons in a magnetic field-free region into the strong B of the storage solenoid (without them spiraling out due to the Magnetic Mirror Effect)
- ➤Testing different materials
- Entrance detector: thin scintillator (100 um)
 + active aperture
 - Minimize multiple scattering for the muons within the acceptance phase space
 - Generate trigger signal for the magnetic kick

Muon injection and entrance trigger

• Superconducting injection tube

- Transport muons in a magnetic field-free region into the strong B of the storage solenoid (without them spiraling out due to the Magnetic Mirror Effect)
- ➤Testing different materials
- Entrance detector: thin scintillator (100 um)
 + active aperture
 - Minimise multiple scattering for the muons within the acceptance phase space
 - Generate trigger signal for the magnetic kick

• Beam test 2022:

Demonstrated feasibility of anti-coincidence triggering

• Running G4Beamline simulations to determine the best parameters for the muon injection

- Best guess initial parameters: Injection angle, $\theta = 47.42^{\circ}$ Initial injection radius, r = 40.19 mm Longitudinal injection coordinate, z = 435 mm Initial angle on transverse plane, $\phi = 5.65^{\circ}$
- Muons can be stopped with a peak time of \sim 140 ns

Muon tracking

- Characterize muon trajectory before EDM measurement
 - ➤Measure the injection angle (~mrad) and momentum (~1%)
 - Stability of injected muon trajectories important for high trapping efficiency, precise triggering and cancelation of systematic uncertainties between clockwise (CW) & counter-clockwise (CCW) injections

Gaseous TPC chamber with GridPix readout

- Need a very light/low pressure gas mixture and a very thin entrance window to minimize MS
- ➤Tracking over ~1 full turn of the muon

- Quadrupole field pulse to cancel the longitudinal muon momentum
- Delay between the trigger and the pulse needs to be $\leq 150 \ ns$

- Shielding of the magnetic pulse seen by the muon due to the eddy currents induced in the frozen-spin electrodes
 - Factor ~3 shielding measured with uniform Alu coated electrodes
 - Close to no shielding with stripe-segmented Alu coating!

PulseCoil : Alu,10 × 10mm², IR = 40 mm GND : Alu/Kapton 30 nm +HV : Alu/Kapton 30 nm

- Detection of g-2 precession
 - a) Measure field seen by muons in the storage zone
 - b) Tune the radial E field to the frozen spin condition

- Detection of EDM precession
 - Measurement of the longitudinal (along the *B* field) asymmetry as a function of time: A(t)

- **Detection of g-2 precession**
 - a) Measure field seen by muons in the storage zone
 - b) Tune the radial E field to the frozen spin condition
 - Requires momentum resolution (~MeV)

- Detection of EDM precession
 - Measurement of the longitudinal (along the *B* field) **asymmetry** as a function of time: A(t)
 - Requires spatial resolution along the cylinder (~mm)

• Si strip detector for forward-backward asymmetry measurement

- > 2 cylindrical layers (r=35 mm, 47.5 mm) + petals
- > optimizing detector geometry and layout to maximize momentum acceptance and track reconstruction efficiency, with as low material budget as possible

- Scintillating fibers (250 um) with transverse and longitudinal segmentation
 - Measure longitudinal EDM asymmetry Reconstruction of (longitudinal) momentum ➤Timing resolution of a single fiber <2 ns</p>

0.25 mm 0.75 mm

Longitudina positon [mm]

Longitudinal position vs time

• All effects that lead to a *real* or *apparent* spin precession around the radial axis that are not related to the EDM

>Coupling of a_{μ} with the EM fields of the experimental setup (*real*)

> Early to late variation of detection efficiency of the EDM detectors (*apparent*)

• All effects that lead to a *real* or *apparent* spin precession around the radial axis that are not related to the EDM

Coupling of a_{μ} with the EM fields of the experimental setup (*real*) Early to late variation of detection efficiency of the EDM detectors (*apparent*)

- Example:
 - ➢ Non-constant radius of cylindrical anode → induces E_z
 - syst proportional to $\vec{\beta} \times \vec{E}$

• All effects that lead to a *real* or *apparent* spin precession around the radial axis that are not related to the EDM

Coupling of a_{μ} with the EM fields of the experimental setup (*real*) Early to late variation of detection efficiency of the EDM detectors (*apparent*)

 $1.0\cdot 10^{-20}$

 $-2.8 \cdot 10^{-21}$

 $-7.9 \cdot 10^{-22}$

 $-2.2 \cdot 10^{-22}$

 $-6.3 \cdot 10^{-23}$

 $-1.8 \cdot 10^{-23}$

 $5.0 \cdot 10^{-24}$

Phase I commissioning plans

- Beam time 2023:
 - Align the experiment to the beam using a prototype of a segmented scintillating beam monitor
 - Measure the ToF stability between CW & CCW injections
 - with and without B field
 - need Δp<0.5% to cancel out syst

• 2024

PAUL SCHERRER INSTITUT

- Injection through the SC channel; stop the muons in a target and measure the decay asymmetry
- 2025

> Muon storage using the magnetic pulse, g-2 measurement and freezing the spin

• 2026

➢Phase I data-taking!

Summary

- A dedicated experiment to search for a muon EDM is being set-up at PSI
 - Optimization of the design using simulations
 - Detector prototypes
 - Test beams for demonstrating feasibility
- Expected sensitivity 3 orders of magnitude beyond current experimental limits

 Phase I: <3 × 10⁻²¹ e·cm
 - Phase II: $< 6 \times 10^{-23} e \cdot cm$

The collaboration (& growing)

PSI Proposal No. R-21-02.1 Measurement of the Muon Electric Dipole Moment

M. Giovannozzi **CERN:** Beams Department, Esplanade des Particules 1, 1211 Meyrin, Switzerland

M. Hoferichter **UB:** University of Bern, Bern, Switzerland

 $\label{eq:G.Hiller} \textbf{UD:} \ \textbf{University} \ \textbf{of Dortmund, Dortmund, Germany}$

R. Appleby, I. Bailey CI: Cockcroft Institute, Daresbury, United Kingdom

C. Chavez Barajas, T. Bowcock, J. Price, N. Rompotis, T. Teubner, G. Venanzoni, J. Vossebeld UL: University of Liverpool, Liverpool, United Kingdom

> R Chislett, G. Hesketh UCL: University College London, London, United Kingdom

N. Berger, M. Köppel¹, A. Kozlinsky, M. Müller¹, F. Wauters UMK: University of Mainz - Kernphysik, Mainz, Germany

A. Keshavarzi, M. Lancaster UM: University of Manchester, Manchester, United Kingdom

F. Trillaud UNAM: Universidad Nacional Autonma de Mexico, Mexico City, Mexico

> B. Märkisch TUM: Technical University Munich, Munich, Germany

A. Baldini, F Cei, L. Galli, M. Grassi, D. Nicolò, A. Papa, G. Signorelli, B. Vitali INFN-P: INFN and University of Pisa, Pisa, Italy

> G. Cavoto, F. Renga, C. Voena UR: University and INFN of Roma, Roma, Italy

C. Chen, T. Hu¹, K.S. Khaw, J.K. Ng¹, G.M. Wong¹, Y. Zeng¹ SJTU: Shanghai Jiao Tong University and Tsung-Dao Lee Institute, Shanghai, China

A. Adelmann, C. Calzolaio, R. Chakraborty, M. Daum, A. Doinaki, C. Dutsov, W. Erdmann, T. Hume¹, M. Hildebrandt, H. C. Kästli, A. Knecht, L. Morvaj, D. Reggiani, A. Rehman, P. Schmidt-Wellenburg² **PSI**: Paul Scherrer Institut, Villigen, Switzerland

> K. Kirch³, M. Sakurai^{1,5} ETHZ: ETH Zürich, Switzerland

L. Caminada⁵, A. Crivellin⁵ UZ: University of Zürich, Zürich, Switzerland

July 18, 2023

Wir schaffen Wissen – heute für morgen

• For B = 3T, p = 28 MeV and 125 MeV : $E_{\rm f} = 0.3 \,{\rm MV/m}$ and $E_{\rm f} = 1.9 \,{\rm MV/m}$

$$\sigma(d_{\mu}) = \frac{a\hbar\gamma}{2P_0 E_{\rm f}\sqrt{N}\tau_{\mu}A}$$

 $E_{\rm f} \approx a B c \beta \gamma^2$

	$\pi E1$	$\mu {f E1}$
Muon flux (μ^+/s)	4×10^{6}	1.2×10^8
Channel transmission	0.03	0.005
Injection efficiency	0.017	0.60
Muon storage rate $(1/s)$	2×10^3	360×10^3
Gamma factor γ	1.04	1.56
e^+ detection rate (1/s)	500	90×10^3
Detections per 200 days	8.64×10^9	1.5×10^{12}
Mean decay asymmetry A	0.3	0.3
Initial polarization P_0	0.95	0.95
Sensitivity in one year $(e \cdot cm)$	${<}3\times10^{-21}$	$< 6 \times 10^{-23}$

Going from Phase I to Phase II

Phase I

- B-Field 3T
- Momentum 28 MeV/c
- Muon radius 31mm
- Most positrons outside

Phase II

- B-Field 3T
- Momentum 125 MeV/c
- Muon radius 141 mm
- Most positrons inside

- A_d(direction)

• Si strip detector for forward-backward asymmetry measurement

- >2 cylindrical layers (r=35 mm, 47.5 mm) + petals
- >min momentum acceptance determined by the closeness of the layers to the storage region (30 mm)
- max momentum acceptance depends on the longitudinal dimension; p(e+)>58 MeV hit the magnet bore

Eddy currents in the electrodes

