

The 24th International Workshop on Neutrinos From Accelerators (NuFact 2023) Seoul, 21-26 August 2023

Search for a muon electric dipole moment using the frozen-spin technique

Ljiljana Morvaj (PSI), on behalf of the *muEDM@PSI* **collaboration**

- Muon EDM SM value is many orders of magnitude below current experimental sensitivities
	- **≻ Observation of EDM → new physics!**

• **EDM violates parity (P) & time-reversal (T)** \blacktriangleright Under the assumption of CPT => CP violation Need BSM CP-violating sources to explain the **baryon asymmetry in the Universe**

• Interaction of a particle spin with EM fields:

PAUL SCHERRER INSTITUT

Magnetic & electric dipole moment (EDM)

Current status of muon EDM

PAUL SCHERRER INSTITUT

Measurement principle

- Muon spin precesses in the presence of \overline{E} & \overline{B} fields
	- **Measure the precession frequency/plane** (knowing the fields)

 \rightarrow infer a_{μ} & d_{μ}

- **BNL/FNAL**
	- "Magic" momentum: 3.09 GeV
- **J-PARC**

PAUL SCHERRER INSTITUT

No *E* field for focusing

Simplifying the measurement

- **BNL/FNAL**
	- "Magic" momentum: 3.09 GeV
- **J-PARC**

PAUL SCHERRER INSTITU

No *E* field for focusing

• **PSI: The frozen spin technique**

Apply radial *E* field such that it cancels the $g - 2$ term

- No EDM:
	- spin frozen to the direction of motion
- **EDM:**
	- $-$ Spin precession only in the plane orthogonal to the plane of motion

• **Polarized (~95%) μ ⁺** produced in pion decays

- Decay e⁺ emitted preferentially in the spin direction
- Count the number of e⁺ in the "up" and "down" detectors
- In the **absence of EDM** the spin is frozen along momentum direction
	- **no asymmetry**
- **Non-0 EDM**:
	- \triangleright spin precession out of the orbit plane
	- **build up of the "up-down" asymmetry with time**

Experiment layout

- Muons injected through a superconducting (SC) channel
- Fast entrance scintillator triggers magnetic pulse that stops the longitudinal μ^* motion
- Weakly focusing field for storage
- Thin electrodes provide an electric field (*3 kV/cm*) for the frozen spin
- Si strip/scintillator detectors for decay e+ tracking

Phased approach

Phase I Phase II

Phase I

- **p=28 MeV** muons
- Existing solenoid at PSI, max 5 T
- Bore diameter 200 mm
- Length 1 m
- Field measured in 2022 & found suitable for injection

Phase II

- **p=125 MeV** muons
- Larger bore (up to 900 mm diameter)
- Better spatial and temporal stability

Muon injection and entrance trigger

• **Superconducting injection tube**

- Transport muons in a magnetic field-free region into the strong B of the storage solenoid (without them spiraling out due to the Magnetic Mirror Effect)
- Testing different materials

Muon injection and entrance trigger

• **Superconducting injection tube**

- \triangleright Transport muons in a magnetic field-free region into the strong B of the storage solenoid (without them spiraling out due to the Magnetic Mirror Effect)
- \triangleright Testing different materials
- **Entrance detector: thin scintillator (100 um) + active aperture**
	- \triangleright Minimize multiple scattering for the muons within the acceptance phase space
	- \triangleright Generate trigger signal for the magnetic kick

Muon injection and entrance trigger

• **Superconducting injection tube**

- \triangleright Transport muons in a magnetic field-free region into the strong B of the storage solenoid (without them spiraling out due to the Magnetic Mirror Effect)
- \triangleright Testing different materials
- **Entrance detector: thin scintillator (100 um) + active aperture**
	- \triangleright Minimise multiple scattering for the muons within the acceptance phase space
	- \triangleright Generate trigger signal for the magnetic kick

• **Beam test 2022:**

Demonstrated feasibility of anti-coincidence triggering

• Running G4Beamline simulations to determine the best parameters for the muon injection

- Best guess initial parameters: Injection angle, $\theta = 47.42^{\circ}$ Initial injection radius, $r = 40.19$ mm Longitudinal injection coordinate, $z = 435$ mm Initial angle on transverse plane, $\varphi = 5.65^{\circ}$
- Muons can be stopped with a peak time of \sim 140 ns

Muon tracking

- **Characterize muon trajectory before EDM measurement**
	- \blacktriangleright Measure the injection angle (~mrad) and momentum (~1%)
	- Stability of injected muon trajectories important for high trapping efficiency, precise triggering and cancelation of systematic uncertainties between clockwise (CW) & counter-clockwise (CCW) injections

• **Gaseous TPC chamber with GridPix readout**

- Need a very light/low pressure gas mixture and a very thin entrance window to minimize MS
- \blacktriangleright Tracking over \sim 1 full turn of the muon

- **Quadrupole field pulse to cancel the longitudinal muon momentum**
- Delay between the trigger and the pulse needs to be ≤ 150 ns

Magnetic pulse & electrodes

- **Shielding** of the magnetic pulse seen by the muon due to the **eddy currents induced in the frozen-spin electrodes**
	- \triangleright Factor ~3 shielding measured with uniform Alu coated electrodes
	- **Close to no shielding with stripe-segmented Alu coating!**

PulseCoil: Alu, 10×10 mm², IR = 40 mm GND: Alu/Kapton 30 nm +HV: Alu/Kapton 30 nm

- **Detection of g-2 precession**
	- **a) Measure field** seen by muons in the storage zone
	- **b) Tune the radial E field to the frozen spin condition**
- **Detection of EDM precession**
	- Measurement of the **longitudinal** (along the *B* field) **asymmetry** as a function of time: A(t)

- **Detection of g-2 precession**
	- **a) Measure field** seen by muons in the storage zone
	- **b) Tune the radial E field to the frozen spin condition**
	- \triangleright Requires momentum resolution (~MeV)
- **Detection of EDM precession**
	- Measurement of the **longitudinal** (along the *B* field) **asymmetry** as a function of time: A(t)
	- \triangleright Requires spatial resolution along the cylinder (~mm)

• **Si strip detector for forward-backward asymmetry measurement**

- ≥ 2 cylindrical layers (r=35 mm, 47.5 mm) + petals
- \triangleright optimizing detector geometry and layout to maximize momentum acceptance and track reconstruction efficiency, with as low material budget as possible

- **Scintillating fibers** (250 um) with transverse and longitudinal segmentation
	- **Measure longitudinal EDM asymmetry**
	- Reconstruction of (longitudinal) momentum Timing resolution of a single fiber <2 ns

Longitudinal position vs time

• All effects that lead to a *real* or *apparent* spin precession around the radial axis that are not related to the EDM

 \geq Coupling of a_{μ} with the EM fields of the experimental setup *(real)*

Early to late variation of detection efficiency of the EDM detectors (*apparent*)

• All effects that lead to a *real* or *apparent* spin precession around the radial axis that are not related to the EDM

 \geq Coupling of a_{μ} with the EM fields of the experimental setup *(real)* Early to late variation of detection efficiency of the EDM detectors (*apparent*)

- Example:
	- \triangleright Non-constant radius of cylindrical anode \rightarrow induces E_z
		- syst proportional to $\vec{\beta} \times \vec{E}$

• All effects that lead to a *real* or *apparent* spin precession around the radial axis that are not related to the EDM

 \geq Coupling of a_{μ} with the EM fields of the experimental setup *(real)* Early to late variation of detection efficiency of the EDM detectors (*apparent*)

Measured false EDM $d^{\rm r}_{\mu}$ e·cn

Phase I commissioning plans

- Beam time 2023:
	- \triangleright Align the experiment to the beam using a prototype of a segmented scintillating beam monitor
	- Measure the ToF stability between CW & CCW injections
		- with and without B field
		- need Δp <0.5% to cancel out syst

PAUL SCHERRER INSTITUT

- \triangleright Injection through the SC channel; stop the muons in a target and measure the decay asymmetry
- 2025

 \triangleright Muon storage using the magnetic pulse, g-2 measurement and freezing the spin

• 2026

Phase I data-taking!

Summary

- **A dedicated experiment to search for a muon EDM is being set -up at PSI**
	- Optimization of the design using simulations
	- Detector prototypes
	- Test beams for demonstrating feasibility
- **Expected sensitivity 3 orders of magnitude beyond current experimental limits** - Phase I: $<$ 3 × 10⁻²¹ e·cm - Phase II: $< 6 \times 10^{-23}$ e·cm

The collaboration (& growing)

PSI Proposal No. R-21-02.1 Measurement of the Muon Electric Dipole Moment

M. Giovannozzi CERN: Beams Department, Esplanade des Particules 1, 1211 Mevrin, Switzerland

> M. Hoferichter **UB:** University of Bern, Bern, Switzerland

G. Hiller UD: University of Dortmund, Dortmund, Germany

R. Appleby, I. Bailey CI: Cockcroft Institute. Daresbury. United Kingdom

C. Chavez Barajas, T. Bowcock, J. Price, N. Rompotis, T. Teubner, G. Venanzoni, J. Vossebeld UL: University of Liverpool, Liverpool, United Kingdom

> R Chislett, G. Hesketh UCL: University College London, London, United Kingdom

N. Berger, M. Köppel¹, A. Kozlinsky, M. Müller¹, F. Wauters **UMK:** University of Mainz - Kernphysik, Mainz, Germany

A. Keshavarzi, M. Lancaster **UM:** University of Manchester, Manchester, United Kingdom

F. Trillaud **UNAM:** Universidad Nacional Autonma de Mexico, Mexico City, Mexico

> **B.** Märkisch TUM: Technical University Munich, Munich, Germany

A. Baldini, F Cei, L. Galli, M. Grassi, D. Nicolò, A. Papa, G. Signorelli, B. Vitali INFN-P: INFN and University of Pisa, Pisa, Italy

> G. Cavoto, F. Renga, C. Voena UR: University and INFN of Roma, Roma, Italy

C. Chen, T. Hu¹, K.S. Khaw, J.K. Ng¹, G.M. Wong¹, Y. Zeng¹ SJTU: Shanghai Jiao Tong University and Tsung-Dao Lee Institute, Shanghai, China

A. Adelmann, C. Calzolaio, R. Chakraborty, M. Daum, A. Doinaki

 \tilde{J}_n C. Dutsov, W. Erdmann, T. Hume¹, M. Hildebrandt, H. C. Kästli, A. Knecht, L. Morvaj, D. Reggiani, A. Rehman, P. Schmidt-Wellenburg² PSI: Paul Scherrer Institut, Villigen, Switzerland

> K. Kirch³, M. Sakurai^{1,5} ETHZ: ETH Zürich, Switzerland

L. Caminada⁵, A. Crivellin⁵ UZ: University of Zürich, Zürich, Switzerland

Wir schaffen Wissen – heute für morgen

• For B = 3T, p = 28 MeV and 125 MeV : $E_f = 0.3 \text{ MV/m}$ and $E_f = 1.9 \text{ MV/m}$

$$
\sigma(d_{\mu}) = \frac{ah\gamma}{2P_0E_f\sqrt{N}\tau_{\mu}A}
$$

 $E_{\rm f} \approx a B c \beta \gamma^2$

Going from Phase I to Phase II

Phase I

- B-Field 3T
- Momentum 28 MeV/c
- Muon radius 31mm
- Most positrons outside

Phase II

- B-Field 3T
- Momentum 125 MeV/c
- Muon radius 141 mm
- Most positrons inside

- A_e (energy)
- A_d (direction)

• **Si strip detector for forward-backward asymmetry measurement**

- ≥ 2 cylindrical layers (r=35 mm, 47.5 mm) + petals
- \triangleright min momentum acceptance determined by the closeness of the layers to the storage region (30 mm)
- \triangleright max momentum acceptance depends on the longitudinal dimension; p(e+)>58 MeV hit the magnet bore

Eddy currents in the electrodes

