

COMET Muon to Electron Conversion Experiment at J-PARC

MyeongJae Lee (Sungkyunkwan University, Korea) The 24th International Workshop on Neutrinos From Accelerators

M.J.Lee, COMET, NUFACT 2023

Aug 22, 2023

OME COMET (COherent Muon to Electron Transition)

M.J.Lee, COMET, NUFACT 2023

2

OME Very small possibility of CLFV in SM

In SM, we need 30x more muon than the Earth. CLFV observation= Signature of New physics in BSM

 $10^{54} \mu$

OME How much sensitive to BSM

***	Large effects	(Muon) LFV experiments are generally most sensitive
**	Visible but small	to many BSM models, very high NP scale.
*	No sizeable effect	Note: All experiments are equally important to discriminate models

- CLFV via Higgs can be measured best in LHC, but, this is not the only BSM that CLFV experiments are sensitive to.
- Muon LFV experiments can cover various BSM in much higher energy scale
 6 M.J.Lee, COMET, NUFACT 2023 Aug 22, 2023

OMET Phase-I Experiment: for $O(10^{-15})$ SES

	Production target +	solenoid (5T)		COMET Phase-I	COMET Phase-II
			E(Proton)	8 GeV	
			P(Proton)	3.2 kW	56 kW
			N (proton)	3.2x10 ¹⁹	6.8x10 ²⁰
		Cylindrical Drift	Proton Target	Graphite	Tungsten
Proton Beam		Chamber	Muon Target	Aluminum	Aluminum ?
Detector solenoid (IT)			Detector	Cylindrical Drift chamber	Straw + calorimeter
			Sensitivity (90% CL)	7x10 ⁻¹⁵	I.7xI0 ⁻¹⁷ ∼I0 ⁻¹⁸
Muon Transport			DAQ start	FY2025	After Phase-I completion
solelioid (ST)			DAQ Time (days)	~150	180 ~ 300
10	Muon Stopping target	COMET, I	NUFACT 2023		Aug 22, 2023

OME_{e}^{μ} COMET Phase- α

- A low beam-intensity run to study the beamline, in Feb-Mar 2023
- Measurement of the proton beam and π/μ backward production yield
- Details in Friday WG4 talk by Dr. Wu Chen

Aug 22, 2023

оме J-PARC facility / Beamline

- J-PARC returned online after power supply upgrade
- Proton C1 Beamline is ready

OME Pulsed proton beam

- Construction on going from 2020
- Inspection on CS coil performance and repair is underway
 - Finalize by early 2024

- DS coil and peripherals delivered June 2023.
- Excitation test within this year

BS magnet delivered March 2022

MET Main detector for Phase-I: CyDET(CDC+CTH)

- **CDC**: All stereo-wire drift chamber, 20 layers, \sim 5000 sense wires, He:iC₄H₁₀ = 9:1, HV=1850V
- Momentum resolution <200keV/c @ 105 MeV/c, spatial resolution 170um
- Rebuilding cosmic test setup underway in J-PARC
- CTH : 64-segmented two layered scintillators for trigger
- ~0.8 ns timing resolution. All scintillator delivered, module Bias Suppride Strain upderway

Aug 22, 2023

OME Straw Detector (Beam measurement and Phase-II)

- Detector for Phase-II experiment / Beam measurement in Phase-I (1/1000 beam power)
- Beam test with prototype achieved 150um spatial resolution, <200keV/c momentum resolution feasible.
- First station fully assembled and tested with Phase-α DAQ : issues on electronics were identified. Assembly of next stations underway
- Collaboration with CERN for new straw (t12μm / φ5mm) R&D for Phase-II

OME Calorimeter (Beam measurement and Phase-II)

- ~1000 x LYSO crystal (20x20x120 mm) for measuring electron energy in Phase-II
- ▶ 512 crystals for Phase-I : >90% crystals acquired.
- Light readout Hamamatsu APD S8864-1010 with 10x10 mm sensitive area
- Measured energy resolution better 5% for the 105 MeV electrons
- "EROS" RO board with DRS-4 chip @ I GS/s board under production / first real signal observed during Phase-α

EROS board

OME Trigger / DAQ

- High trigger rate (20-30 kHz) for DAQ
 - Mostly background hits
 - Beam electron, secondary from capture neutron/gamma
 - Online trigger suppress BG hits
- A configurable and flexible Trigger system/
 - Central system based on commercial CERN productackground and a custom interface board
 (b) after GE
 - Ensuring commonality in interfacing with different systems.
- Online BG hit/event classification using charge and layer features
 - Trigger board implementation to the LUT of FPGA
 - Trigger rate reduced from 91 kHz to 13 kHz, 96% efficiency and 3.2µs latency.

OMET Cosmic Ray Veto

- To suppress Cosmic Ray muon to factor of 10-4
- A bit delayed schedule. First scintillator module constructed in JINR and on the way to J-PARC

Four-layer scintillator CRV for CyDET coverage with SiPM readout 3/4 coincidence veto ~99.86%

Signal and DIO (BR=3 × 10⁻¹⁵)

OMET Schedule / Summary

COMET Phase-I Target single event sensitivity : 3x | 0⁻¹⁵ DAQ start at FY2025 Beamline ready, Solenoid construction / installation on going Critical detectors are mostly ready