

Deep Learning Reconstruction at DUNE Far Detector

Jianming Bian University of California, Irvine

NuFACT2023, Seoul, Korea

for the DUNE Collaboration

DEEP UNDERGROUND NEUTRINO EXPERIMENT

- New neutrino beam at Fermilab (1.2 MW, upgradeable to 2.4 MW), 1300 km baseline
- Four 17 kton Liquid Argon Time Projection Chamber (LArTPC) Far Detector modules at Sanford Underground Research Facility, South Dakota, 1.5 km underground
- Multiple technologies for the Near Detector (ND)
- v_e appearance and v_{μ} disappearance \rightarrow Neutrino mass ordering and CP violation
- Large detector, deep underground, high intensity beam → Supernova burst neutrinos, atmospheric neutrinos, sterile neutrinos, nucleon decay, other BSM, etc

DUNE Far Detector (FD): Liquid Argon Time Projection Chamber (LArTPC)

- High resolution 3D track reconstruction
 - Charged particle tracks ionize argon atoms
 - Ionized electrons drift to anode wires (~ms) for YZ-coordinate
 - Electron drift time projected for X-coordinate
- Argon scintillation light (~ns) detected by photon detectors, providing t_0
- Output: a 2-D pixelmap image for each readout plane

Far Detector: Horizontal Drift (HD) LArTPC

- First module will be horizontal-drift:
 - 18m x 19m x 66m
 - 3 readout planes, two introduction and one collection

Facility and Cryogenic

FD Hall

- Drift distance: 3.6 m, wire pitch:
 5 mm
- 4 drift volumes

Far Detector: Vertical Drift (VD) LArTPC

- For the 2nd DUNE FD module, has a vertical drift (VD) path in contrast to HD
- 2 drift volumes, cathode plane on the middle
- Anode: a stack of perforated PCBs with 3 layers of readout etched electrode strips in different orientations
- Modular design allows easy assembly and production. Wires → Strips improves mechanical robustness

Convolutional Neural Network (CNN) for Event Identification and Energy Reconstruction

- DUNE's pixel map readout is ideal for image processing neural networks to reconstruct neutrino events.
- CNNs are deep neural networks take raw pixel values input, applying convolutional filters to reduce the number of parameters
- Uses the 3 x 2D readout images, one for each wire/strip-plane, directly as input to a ResNet CNN architecture
- CNN then merges information across the 3 planes and uses a fully connected layer at the end for neutrino flavor classification or energy regression ⁶

Event Classification CNN identifiers in DUNE FD HD

- Convolutional Neural Network (CNN)-based classifier ("CVN") to tag neutrino flavor, main PID for HD Technical Design Report (TDR) analysis and basis for sensitivity projections [Phys. Rev. D 102, 092003, 2020]
- Identify $v_{\mu}CC$, $v_{e}CC$ and NC events

Phys.Rev.D 102 (2020) 9, 092003

Performance is better than DUNE CDR assumptions

Event Classification CNN identifiers in DUNE FD VD

- Training on fraction of planned simulated sample shows very similar performance as for HD
- Efficiency to tag CC ~90% near peak DUNE flux (~2.5-3 GeV) with overall purity ~80%
- Used as input for new VD-based sensitivity studies (technical design report analysis), similar results as HD

$\nu_e CC$ and $\nu_\mu CC$ Event Energy

- CNN with linear output regression for event energy, optimizing resolution $(E_{reco}-E_{true})/E_{true}$
- Weighted events by energy to reduce energy dependent bias in training
- Better resolutions than leption+hadronic energy method, less energy dependent bias with energy-reweighted training arXiv:2012.06181

9

Particle Energy Reconstruction

- Regression CNNs for final state particle energies
- Trained on clustered lepton shower/track pixelmaps produced by Pandora

3-D Particle Direction Reconstruction

- Direction regression heavily dependent on 3-D geometry
- Designed a 3-D CNN to reconstruct particle directions.
- 3-D image constructed from the 3x2D detector images
- Train direction CNNs on full-event pixelmaps or clustered lepton shower/track pixelmaps

Particle Direction Reconstruction

- 3D CNNs beat traditional fit-to-hits method (PCA) with better electron and muon resolutions in all energy regions
- 3D CNN trained with full-event pixelmaps shows comparable performance to that trained with clustered lepton shower/track pixelmaps \rightarrow extract particle kinematics without clustering/tracking

Neural Network Robustness Tests

CNNs show robustness against neutrino **DUNE** Simulation interaction modes V2 - CNN Energy V2 - Lep. + Had. Energy ν_{μ} CC Energy GENIE versions have small effects in CNNs V3 - CNN Energy V3 - Lep. + Had. Energy Events DUNE Simulation **DUNE** Simulation 4000 CNN Energy CNN Energy 4000 Leptonic+Hadronic Energy Leptonic+Hadronic Energy $QE \nu_e CC$ Res ν_e CC 3000 3000 Events 2000 RES 2000 Stents QE -0.50.51000 1000 0 (RecoE-TrueE)/TrueE (RecoE-TrueE)/TrueE (RecoE-TrueE)/TrueE DUNE Simulation (a) ν_e CC energy QE (b) ν_e CC energy Res 0.5F V2 - CNN (Full-event) **DUNE** Simulation **DUNE** Simulation μ direction 5001000 V2 - Fit to hits CNN Energy CNN Energy Leptonic+Hadronic Energy Leptonic+Hadronic Energy 0.44000 DIS ν_e CC MEC ν_e CC in $\boldsymbol{\nu}_{u}$ CC V3 - CNN (Full-event) 800 V3 - Fit to hits 3000 MEC Density 50 Events DIS 400 1000 200 0.5(RecoE-TrueE)/TrueE (RecoE-TrueE)/TrueE 0.1 -(d) ν_e CC energy MEC (c) ν_e CC energy DIS 0.0 0 5 10 15 20 25 30 Angle between Dir_{True} & Dir_{Reco} (Degree) Nue Event Energy vs. interaction modes **GENIE** version 2 vs 3

Graph Neural Networks (GNN)

- Graph Neural Networks (GNN)
 - Define input data as a graph represented by nodes and edges
 - Nodes are generalised as quantised objects with some arbitrary set of features.
 - Edges describe the relationships between nodes.
 - Perform convolutions on nodes and edges rather than the entire pixel map in CNN → Speed up NN training
 - Output is user-defined: Classification and regression

Graph Neural Network for Object Reconstruction in LArTPC (ExtExa.TrkX project)

- Successfully reconstruct LArTPC showers/tracks with GNN in ExtExa.TrkX project (a collaboration developing GNN reconstruction for HEP)
- Implementing under DUNE context

Figure 4. Confusion matrix showing the overlap of true and reconstructed edge labels.

Figure 2. Example graph of a v_e interaction (left: ground truth, right: model output). Shower-like edges are drawn in red, hadronic edges are drawn in blue, muonic edges are drawn in green and false edges are drawn in grey.

Jeremy Hewes, Adam Aurisano etc., EPJ Web of Conferences 251, 03054 (2021)

ProtoDUNE HD (SP) and VD at EHN1 (CERN)

- ProtoDUNE-HD (SP in Phase I) and VD are two large DUNE prototype detectors at CERN Neutrino Platform EHN1
- 770 tons LAr mass each
- Expose to test beams, momentumdependent beam composition contains *e*, *K*[±], μ, p, π[±]
- Also take cosmic ray data
- ProtoDUNE Phase I completed, preparing for Phase 2 running of ProtoDUNE HD and VD

- H4-VLE beam line [Phys. Rev. Accel. Beams 22, 061003 (2019)]
- New tertiary, low-mom beam line; 2 secondary targets
- W for lower momenta (0-3 GeV/c); Cu for higher momenta (4-7 GeV/c)
- TOF and Cherenkov counters for PID

CNN for Shower/Track Separation in ProtoDUNE

ProtoDUNE-SP DATA ProtoDUNE-SP Event with Example CNN Input Patches

Use CNN to classify energy deposits (hits) from Shower, Track and Michel electrons

- Showers: Energy deposit pattern caused by electron, gamma, etc
- Tracks: Energy deposit pattern caused by muon, pion, etc
- Michel electrons: Low energy electron from muon decays

Can be used in clustering, PID, etc

Shower/Track CNN architecture

32×3

Eur.Phys.J.C 82 (2022) 10, 903

- The inputs are 48 pixel images centered on the reconstructed hit object to be classified
- A single convolutional layer is used to extract feature maps from the images
- These are processed by two dense (fully connected) layers before being split into two branches which classify the images
- Output is the type of hit: from shower? Track? Michel electron? Shower Classifier Output

Performance of CNN in ProtoDUNE Data

- Test shower classifier scores for different particle species in the ProtoDUNE-SP
- Reasonable DATA/MC agreement

Eur.Phys.J.C 82 (2022) 10, 903

Summary

- Systematically developed event ID, particle ID, event energy reconstruction, particle energy reconstruction, particle direction reconstruction and shower/track clustering with deep-learning methods for DUNE far detectors
- Achieve very good selection efficiency and resolution
- Develop Graph Neural Networks and sparse neural networks to reduce computational burden
- Perform robustness tests with ProtoDUNE data and alterative simulation models

Thister The