DUNE: Long-Baseline Oscillation Sensitivity

Luke Pickering for The DUNE Collaboration STFC Rutherford Appleton Lab 2023/08/25 NuFact 2023 – SNU, Seoul

Science and Technology Facilities Council

Supported by URF\R1\211661

Long-Baseline Oscillations: Open Questions

Is there significant CP violation in the neutrino sector? What are the precise values of the remaining neutrino oscillation parameters?

Are standard PMNS oscillation able to explain observations?

Oscillation Programme Overview

Science and Technology Facilities Council

DUNE: Long-Baseline Oscillation Sensitivity

Measuring Long-Baseline Oscillations with DUNE

$$N_{\text{near}}(E_{\text{obs}}) = \int dE_{\nu} \Phi_{\text{near}}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \mathbf{D}_{\text{near}}$$

Want to know
$$N_{\text{far}}(E_{\text{obs}}) = \int dE_{\nu} \Phi_{\text{far}}(E_{\nu}) \cdot P_{osc}(E_{\nu}) \cdot \sigma(E_{\nu}) \cdot \mathbf{D}_{\text{far}}$$

Observe

- Oscillation measurements **not** just near-to-far ratio:
 - Oscillation is not a function of E_{obs}
- Must use models to infer P_{osc}
- Degeneracies in the integral \rightarrow limits on sensitivity
 - Design ND to minimise Flux and Cross Section degeneracy
 - Limited by Detector capability

CC 1p1h+2p2h

The Far Detectors

- Four caverns with space for 17 kt LAr TPCs
 - Unprecedented detector resolution for an LBL far detector
- FD-1 Horizontal Drift LAr TPC
- FD-2 Vertical Drift LAr TPC
- Rich prototype programme at CERN

KK

Science and Technology Facilities Council

The Near Detectors

<u>A. Furmanski's talk on Tuesday</u> for more information

NDLAr

The Muon

Spectrometer

(Liquid Argon

- Constrain systematic uncertainties
 - Beam
 - Neutrino-argon interactions in few GeV region
- Monitor beam stability
- Function in high-rate environment

- SAND: Beam Monitoring and C12-target physics
- **TMS:** Muon momentum and sign-selection
- NDLAr: Ar40-target physics, unoscillated rate constraint

Science and Technology Facilities Council

SAND

Near Detector: On-the-move

A mobile near detector is one of the ways that DUNE is designed to constrain interaction uncertainties to the required level

L. Pickering

8

Excuse the out of date detector design in the graphic

Near Detector: On-the-move

28.5 m

A mobile near detector is one of the ways that DUNE is designed to constrain interaction uncertainties to the required level

L. Pickering

9

Excuse the out of date detector design in the graphic

Near Detector: On-the-move

Science and Technology Facilities Council

ŘÌ

Oscillation Measurements in a Nutshell

- Existing Oscillation Analyses:
 - Use models to 'unfold' near detector observations to a neutrino energy spectrum (implicit or explicit)
 - Apply oscillation hypothesis
 - Compare to far detector observations

Science and Technology Facilities Council

Oscillation Measurements in a Nutshell

• Existing Oscillation Analyses:

- Use models to 'unfold' near detector observations to a neutrino energy spectrum (implicit or explicit)
- Apply oscillation hypothesis
- Compare to far detector observations

• What happens if the model is wrong?

- Simulate oscillation features at the wrong place in observables
- \circ Inflate errors \rightarrow degrade sensitivity
- Bias measurements

Far detector prediction

Science and Technology Facilities Council

Oscillation Measurements in a Nutshell

- Existing Oscillation Analyses:
 - Use models to 'unfold' near detector observations to a neutrino energy spectrum (implicit or explicit)
 - Apply oscillation hypothesis
 - Compare to far detector observations
- What happens if the model is wrong?
 - Simulate oscillation features at the wrong place in observables
 - Inflate errors → degrade sensitivity
 - Bias measurements
- Current generation experiments are still largely statistically limited
 - The next generation hope not to be limited at the '5 σ ' level
 - Need to actively design the experimental programme to minimize systematic uncertainty in flux and interaction models

Science and Technology Facilities Council

The Analysis Model-Dependence Axis

DUNE-PRISM: Two Uses

1) Over-constrain beam and interaction model in 'traditional' oscillation analysis with on- and off-axis observations

2) Synthesise the measurement of an oscillated flux with the near detector

- → More direct extrapolation of near-detector observations
- → Reduce reliance on accuracy of interaction model predictions

Science and Technology Facilities Council

ŘÌ

ncil

Oscillation Programme Overview

版

Technology Facilities Council **Oscillation Programme Overview**

Science and Technology Facilities Council

ŘÌ

DUNE

Technology Facilities Council

ŘÌ

Oscillation Programme Overview

KK

Science and Technology Facilities Council

KK

Science and Technology Facilities Council

K

Science and Technology Facilities Council

Oscillation Programme Overview

Science and Technology Facilities Council

Science and Technology Facilities Council

Science and Technology Facilities Council

Facilities Council

Complementary Approaches

- Off axis measurements enable more-direct near-to-far extrapolation
 - Reduce dependence on signal interaction model for disappearance
- But, expect lower sensitivity for LC analysis

Science and Technology Facilities Council

PRISM Linear Combination

Near observations

ND/F

Ū

D

tector

Effects

Far detector prediction

Flux Mode

Oscillation Hypothesis

Flux Mode

On-axis Only

Near observations

Mode

Neutrino Energy

Oscillation

Hypothesis

Far detector prediction

ଜୁ ତୁ

etecto f<u>fec</u>ts Interaction

Oscillation Sensitivities

Science and Technology Facilities Council

DUNE: Long-Baseline Oscillation Sensitivity

FD Event Samples

- 2019 Studies:
 - CC-Inclusive, mu- & e-like in nu and nubar mode Ο
- Future:
 - Investigate impact of more granular event selection Ο & projection Near and Far

Science and Technology **Facilities** Council

L. Pickering

30

Mass Ordering: Short Exposures

- Strong MO sensitivity, even with short exposures [O(3-5 years)]
 - P < 0.01 to prefer wrong ratio after 66 kt-MW-yrs

Technology Facilities Council

PRD 105

(2022

072006

Mass Ordering: Ultimate Sensitivity

- Ultimate MO determination is unambiguous
 - Not dependent on precision measurement of other oscillation parameters
 - Requires no external oscillation parameter input

World-Leading Sensitivities

 Assume DUNE-PRISM has been used to minimize and account for significant deviations from interaction model predictions.

Precision Measurements

EPJC 80 (2020) 978

- Expected DUNE sensitivity v.s. current world-averages from NuFit 5.0
- Ultimate θ_{13} sensitivity approaches reactor constraint
- Precision Osc. measurements, especially joint w/ HK & JUNO, will stress-test PMNS: Different energies/detectors/PMNS matrix elements!

KK

Science and Technology Facilities Council

(JHEP 09 (2020) 178))

Oscillation Sensitivities

7–16° δ_{CP} resolution regardless of true value

Science and

Technology **Facilities Council** L. Pickering 35

Reconstructed E. (GeV)

CPV Sensitivity C. Marshall Wednesday Plenary

Summary

- Unprecedented sensitivity to PMNS oscillations with DUNE \circ Constrain δ_{CP} , $|\Delta m^2_{32}|$, θ_{23} , θ_{13} and MO with a single experiment!
- PRISM helps insure against small interaction uncertainty budget

Backups

Science and Technology Facilities Council

DUNE Long-Baseline Oscillation Sensitivity

Sensitivities for Different Scenarios

Science and Technology Facilities Council

Cross-section Energy Evolution

KK

Science and Technology Facilities Council

DUNE Beam in Context

Science and Technology Facilities Council

Missing Proton FDS

- Move 20% of proton energy to neutrons.
- Vary Cross-section model to minimize ND observables
- Effect unacceptable Osc. bias

L. Pickering

43

Science and Technology Facilities Council

DUNE is sensitive to new physics in neutrino oscillations

- If v and v spectra are inconsistent with threeflavor oscillations, it could be due to sterile neutrinos (top), CPT violation (middle), or NSI (bottom)
 - DUNE covers a very broad range of L/E at both the ND and FD
 - DUNE can measure parameters like Δm_{32}^2 with neutrinos and with antineutrinos
 - DUNE has unique sensitivity to NSI matter effects due to long baseline
- Characterizing new physics will be challenging: precise measurements with small matter effect in Hyper-K **and** large matter effect in DUNE Phase II likely required

UNIVERSITY of OCHESTER

NuFACT2023 - DUNE

Science and Technology Facilities Council

38

