

Status of the RENO Experiment

Sanghoon Jeon for the RENO Collaboration Seoul National University

The 24th International Workshop on Neutrinos From Accelerators $21^{th} \sim 26^{th}$ Aug.

NuFACT 2023

The 24th International Workshop on Neutrinos from Accelerators August 21 ~ 26, 2023 at Seoul National University, Seoul, Korea

RENO Collaboration

- Reactor Experiment for Neutrino Oscillation
- 9 institution and 40 physicsists
 - Chonnam National University
 - Dongshin University
 - GIST
 - Gyeongsang National University
 - KAIST
 - Kyungpook National University
 - Seoul National University
 - Seoyeong University
 - Sungkyunkwan University

- Total cost : \$10M
- Start of project : 2006
- The first experiment running with both near & far detectors from Aug. 2011

RENO Experimental Set-up

Results in RENO

- Precise measurement of $|\Delta m^2_{ee}|$ and θ_{13} using ~2200 days of data (Aug. 2011 Feb. 2018)
 - "Measurement of Reactor Antineutrino Oscillation Amplitude and Frequency at RENO" (Phys. Rev. Lett. 121, 201801 (2018. 11. 15))
- Fuel-composition dependent reactor antineutrino yield
 - "Fuel-composition dependent reactor antineutrino yield at RENO" (Phys. Rev. Lett. 122, 232501 (2019. 06. 12))
- Measurement of θ_{13} with nH capture using ~1500 days of data
 - "Observation of reactor antineutrino disappearance using delayed neutron capture on hydrogen at RENO" (JHEP 04 029 (2020. 04. 06))
- Results from sterile neutrino search
 - "Search for Sub-eV Sterile Neutrino at RENO" (Phys. Rev. Lett. 125, 191801 (2020. 11. 06))

Results in RENO

- Reactor Neutrino Spectrum
 - "Measurement of reactor antineutrino flux and spectrum at RENO" (Phys. Rev. D 104, L111301 (2021. 12. 09))
- Sterile neutrino search from joint analysis by RENO & NEOS
 - "Search for sterile neutrino oscillation using RENO and NEOS data" (Phys. Rev. D 105, L111101 (2022. 06. 08))
- Measurement of ⁹Li/⁸He production
 - "Measurement of cosmogenic ⁹Li and ⁸He production rates at RENO" (Phys. Rev. D 106, L012005 (2022. 07. 20))
- Reactor Neutrino Spectrum
 - "Measurement of Reactor Antineutrino Spectra from 235U and 239Pu Fission at RENO" => poster
- Measurement of θ_{13} with nH capture using ~2800 days of data
 - "Combined Measurement of θ_{13} using reactor antineutrino events rates with neutron capture on hydrogen and Gadolinium at RENO" => poster

Measurement of θ_{13} with nH capture

From 1500 [d] of data, $sin^2 2\theta_{13} = 0.086 \pm 0.008(stat.) \pm 0.014(syst.)$

RENO" (JHEP 04 029 (2020. 04. 06))

"Observation of reactor antineutrino disappearance using delayed neutron capture on hydrogen at From 2800 [d] of data combined with nGd, $sin^2 2\theta_{13} = 0.0871 \pm 0.0040(stat.) \pm 0.0045(syst.)$

details in the poster session : "Combined Measurement of θ_{13} using reactor antineutrino events rates with neutron capture on hydrogen and Gadolinium at RENO"

Light Sterile Neutrino Search

- RENO 2200 [d]
- using spectral distortion => reactor model independent
- consistent with standard 3-flavor neutrino oscillation model
- able to set stringent limits in the region $10^{-3} < \Delta m_{41}^2 < 0.1 \text{ eV}^2$

- RENO x NEOS joint

- at same reactor complex (Hanbit Nuclear Power Plant)
- spectral distortion
- exclusion at $0.1 < \Delta m_{41}^2 < 7 \text{ eV}^2$

Reactor Neutrino Spectrum

235U and 239Pu Fission at RENO"

Prompt Energy (MeV)

Measurement of ⁹Li/⁸He production

⁹Li/⁸He is one of the dominant background produced by cosmic muon spallation on ¹²C.

Result for production rate & yield of ⁹Li/⁸He

"Measurement of cosmogenic ⁹Li and ⁸He production rates at RENO" (Phys. Rev. D 106, L012005 (2022. 07. 20))

Precise measurement of $|\Delta m_{ee}^2|$ and θ_{13} (2018) **Energy-dependent disappearance** of reactor antineutrinos -Rate+Spectrum 6000 $\Delta \chi^2$ --- Rate-only Events / 0.2 MeV 4000 Rate+Spectrum Rate-only eV^{2}) 99.7% C.L. 95.5% C.L. 2000 Far Data 68.3% C.L. Prediction (best fit) Prediction (no oscillation) Δm_{ee} Data / Prediction 1. 0.9 0.05 0.1 0.15 0.83 7 4 $E_{\rm p}$ (MeV) $\sin^2 2\theta_{13}$ From 2200d of data, $sin^2 2\theta_{13} = 0.0896 \pm 0.0048(stat.) \pm 0.0047(syst.)$ $|\Delta m_{ee}^2| = 2.68 \pm 0.12 (\text{stat.}) \pm 0.07 (\text{syst.}) (x10^{-3} \text{ eV}^2)$ 10

DAQ Shutdown

- At 16th Mar. 2023, the RENO DAQ was shut-down.
- 3800[d] of total sample had been taken, which is under analysis.

period	name	result
Aug. 2011 ~ Feb. 2018	2200d sample	2018 PRL
Aug. 2011 ~ Mar. 2023	3800d sample	under analysis

- The other systems maintaining quality of the hardware are under operation.
- We have a plan to re-operate the near detector as a reference detector for the RENE experiment (sterile neutrino search).

Expected Uncertainty

Uncertainty of the oscillation parameters as a function of livetime with respect to 2200 [d]

livetime	uncertainty			
	$sin^2 2\theta_{13}$	$ \Delta m^2_{ee} $		
2200 [d]	7.6 [%]	5.2 [%]		
3800 [d] (~1.7times)	6.3 [%]	4.2 [%]		

Systematic Uncertainty by ⁹Li/⁸He

Detector	Near	Far	→ IBD candidate data
IBD rate	470.53 ± 0.51	47.06 ± 0.15	□ IBD MC
After background subtraction	461.00 ± 0.58	44.82 ± 0.18	$rac{1}{2}$ $rac{$
Total background rate	9.53 ± 0.28	2.24 ± 0.10	Ξ = \Box
Live time (days)	1807.88	2193.04	
Accidental rate	2.54 ± 0.03	0.46 ± 0.01	╶╴╴╎╹╵╵╹ ^{┯┓┯┙} ╹╙┽┦ [┱] ╪╋╍┿┓╴╶╪╴ ╩╴╎╴╵╵╹ ^{┯┓┯┙} ╹╙┽┦ [┱] ╪╋╍┿┓╴╶╪╴
⁹ Li/ ⁸ He rate	5.10 ± 0.27	0.98 ± 0.08	
Fast neutron rate	1.81 ± 0.02	0.37 ± 0.01	
²⁵² Cf contamination rate	0.08 ± 0.02	0.43 ± 0.04	
background rate & error	for the		6 7 8 9 10 11
2200[d] result in 2018 PR			$E_{\rm p}({\rm MeV})$

Estimation of ⁹Li/⁸He background

Precision of ⁹Li/⁸He template dominantly affects the background uncertainty, and ultimately $|\Delta m_{ee}^2|$ and θ_{13} .

Combined ⁹Li/⁸He Template

In the 2200d analysis, individual ⁹Li/⁸He template has been used in order to estimate the background rate for each far & near detector.

RENO's far & near detector have "identical", so combined template can be used, which is expected to reduce background uncertainty.

frac. err.	far	near	combine	combined with 3350[d]
1.2~8 [MeV]	0.0361	0.0510	0.0295	0.0221
7~12 [MeV]	0.0514	0.0387	0.0358	0.0264

Significant reduction of systematic uncertainty in 3800d result is expected. Detail effect of the combined template on $|\Delta m_{ee}^2|$ and θ_{13} is under investigation.

Summary

- Since the result for precise measurement of $|\Delta m^2_{ee}|$ and θ_{13} was report in 2018,
 - $sin^2 2\theta_{13} = 0.0896 \pm 0.0048 (stat.) \pm 0.0047 (syst.)$
 - $|\Delta m_{ee}^2| = 2.68 \pm 0.12 (\text{stat.}) \pm 0.07 (\text{syst.}) (x10^{-3} \text{ eV}^2)$
 - , ~1600 days more data has been taken. The total sample corresponds to 3800[d], which is under analysis.
 - $|\Delta m_{ee}^2|$ and θ_{13} measurement
 - reactor neutrino spectrum
 - sterile neutrino search
- The DAQ was shut down on Mar., and the near detector is planed to be re-operated to utilize for the RENE experiment (sterile search).