Yiwen Xiao, Jianming Bian

Measurement of Neutrino-electron Elastic Scattering in the NOvA Near Detector

University of California Irvine On Behalf of the NOvA Collaboration NuFact 2023, August 25, 2023

NuFACT 2023

NOvA (NuMI Off-Axis *ν* **Appearance)** *^e*

- Long baseline neutrino oscillation experiment, optimized for measuring $\nu_{\mu}/\bar{\nu_{\mu}}$ disappearance and $\nu_e/\bar{\nu_e}$ appearance
- 2 functionally identical tracking calorimeter detectors filled with mineral oil, located 14.6 mrad off-axis from NuMI beamline
	- The near detector (ND) is 1 km away from the neutrino beam target
		- 300t, 300 ft underground
	- The far detector (FD) is 810 km away
		- 14 kt on surface
- Beam flux uncertainty essentially affect all analyses using neutrino beam data
	- The near detector allows an in-situ measurement of the flux using neutrino-electron elastic scattering channel

NOvA (NuMI Off-Axis *ν* **Appearance)** *^e*

- Plastic cells are stacked in alternating directions
	- Allow 3D reconstruction
- Charged particles excite the scintillator producing light
- Transported by wavelength shifting fibers
- Collected at readout end and amplified by Avalanche Photo Diodes (APDs)
- 65% active, low-Z material

Yiwen Xiao | Status of the Measurement of Neutrino-Electron Elastic Scattering in the NOvA Near Detector 3

The NOvA Near Detector

- The near detector (ND) is 1 km away from the neutrino beam target and lies 100 m underground at Fermilab.
- It is located 14.6 mrad off-axis from the NuMI beam line, results in a narrow-band neutrino flux peaked at \sim 2 GeV with \sim 1 GeV FWHM.
- 300t tracking calorimeter, constructed from extruded PVC cells filled with liquid scintillator.
- High neutrino flux at Near Detector:
	- Used as a control for the oscillation analyses.
	- Provides a rich dataset for measuring neutrino cross sections.

The NOvA Near Detector

Yiwen Xiao | Status of the Measurement of Neutrino-Electron Elastic Scattering in the NOvA Near Detector 5

- Segmented liquid scintillator detector provides 3D tracks and calorimetry.
- Optimized for EM shower measurements: $X0 = 38$ cm (6 cell depth, 10 cell width).
- Good time resolution (\sim 5 ns) and spatial resolution (\sim few cm).
- Allow clear separation of interactions.

NOvA Reconstruction

• Tracks and showers are reconstructed from these hits.

Yiwen Xiao | Status of the Measurement of Neutrino-Electron Elastic Scattering in the NOvA Near Detector 6

• Hits associated in time and space are used to form a candidate interaction.

NOVA

Neutrino Source

Yiwen Xiao | Status of the Measurement of Neutrino-Electron Elastic Scattering in the NOvA Near Detector 7

- NuMI beam: ν_{μ} or $\bar{\nu_{\mu}}$
	- colliding a proton beam on a solid target and focusing the resulting particles through focusing horns
	- carries large uncertainties from hadron productions on targets and beam transport.
- Neutrino cross-section measurements performed at the near detector are affected by the large uncertainty on the absolute neutrino flux
- External hadron production measurements are used to correct and constrain the flux, and the uncertainties on those measurements result in $\sim 10\%$ uncertainty on the flux prediction **NOvA Simulation**

Neutrino-Electron Elastic Scattering $d^2\sigma\left(E_\nu,E_e\right)$ $N_{\nu}^{\rm obs} \propto \int \Phi_{\rm flux} (E_{\nu}) \cdot \sigma (E_{\nu}) dE_{\nu}$

- Neutrinos can elastically scatter off electrons via neutral current or charge current exchange.
- νe is a pure leptonic process, whose amplitude can be precisely calculated in the standard model at the 1% level (precision of $\sin^2 \theta_W$).
-
- The cross section is very low $(\sim 1/2000$ of the total charged-current cross section). • Using $\nu - e$ to measure the flux of the neutrino beam, which is helpful for all crosssection measurements.

 $N_{\nu-e}^{\mathrm{obs}}(E_e) \propto \left[\left[\Phi_{\mathrm{flux}}(E_{\nu})\right]\right]$

dEedE^ν

• NOvA has developed a convolutional neural network (called CVN) to classify events (v_e CC, v_μ CC, ν NC, Cosmics). The architecture is modified based on MobileNet_v2 with similar performance as ResNet whilst being ~4x faster.

CNN-Based Classifiers for event selection

- The topology of signal event requires one EM shower with no other particles in the final state.
- Event identifications are important for separating signals from substantial backgrounds.
-

CNN-Based Classifiers for event selection

- Training:
	- Signal: Simulation of single electrons in the detector
	- Background: Inclusive MC of an enriched ν_e sample *νe*
	- Preselection was applied to remove events from the peripheral region
	- Reweighted training to to mitigate angular and energy dependencies
- Two event classifiers based on the same architecture were trained.
	- \bullet *ν* − *e* PID:
		- trained with four categories (νe , ν induced π^0 , $\nu_e CC$, Others) *ν* − *e*, *ν* induced π^0 , *ν*_{*e*}CC</sub>
		- to separate νe scattering events from backgrounds.
		- Also used in BSM search
	- e/π^0 PID:
		- trained with only two categories (νe , ν induced π^0)
		- to further rejects backgrounds with ν induced π^0 in the final state.

NOvA Simulation

ν − *e* **Signal Selection**

- Monte Carlo (MC) samples were used to study the event selection.
- Event Selection:
	- Pre-selection: remove obvious ν_{μ} CC interactions.
	- Fiducial and Containment: define the fiducial region and suppress backgrounds induced by neutrino interactions in the rock (mostly upstream of the ND).
	- Single Particle Requirement: the topology of the signal event requires one EM shower with no other particles in the final state.
	- Energy of the primary shower: exclude low-energy events which are hard to distinguish.
	- Nu-on-e classifiers: separating signals from substantial backgrounds using the CNN technique.
	- $E\theta^2$: the scattered electron is very forward going.

11

VINE

ν − *e* **Signal Selection and Optimization**

• Monte Carlo (MC) samples were used to study the event selection.

Optimize selection criteria based on Figure of Merit (FOM). To consider background uncertainty in the measurement, define $FOM = \frac{FOM}{\sqrt{1 - \frac{FOM}{m}}$,

where δB is the systematic uncertainty in the background. Assume $\delta B = 0.2B$ according to the ν_e CC cross-section measurement.

ν − *e* **Signal Selection Results and Sideband Constraint**

- *E* refers to the calorimetric energy of the most energetic shower and θ is the angle between the direction of the most energetic shower and the beam direction
- With CNN PIDs and cut optimization, based on 1.38x1021 POT FHC simulation:
	- Sig. 675.09, Bkg. 75.47 for
	- $FOM = 24.59$
- Sideband Region $(0.005 < E\theta^2 < 0.04)$.
	- Large sideband region (7x signal region) to reduce statistical error
	- Sideband region can be used to correct background yield in the signal region

Performance of CNN PIDs breakdown by Primary Mother Particle

- After all cuts without CNN PID, μ^- and π^0 play major roles;
- νe PID helps to remove μ^- events;
- e/π^0 PID helps to further reject π^0 events.

• $\nu - e$ PID and e/π^0 PID helps to remove QE, RES, DIS, COH, MEC and Diff events in the

Performance of CNN PIDs breakdown by interaction mode

background

Nu-E Signal Correction — One-Loop Radiative Correction

16

• To improve the precision of the simulated $\nu - e$ elastic scattering cross-section, radiative

corrections were calculated by tuning C_{LL} and C_{LR} to one-loop values obtained from global fits to electroweak data.

NOVA

$$
w(\nu_{\mu}e) =
$$

$$
\frac{\sigma^{radcor}(\nu_{\mu}e^{-})}{\sigma^{nom}(\nu_{\mu}e^{-})}
$$

(Ref: [arXiv:1512.07699](https://arxiv.org/pdf/1512.07699.pdf) and [arXiv: 1906.00111](https://arxiv.org/pdf/1906.00111.pdf) (MINERvA)

• The background in the signal region needs to be estimated and subtracted to obtain the $\nu - e$ signal yield in data ($N_{\nu-e}^{Data}$)

Systematic Uncertainty Study — background

17

• The integrated neutrino flux in the data can be determined as follows:

- The background subtraction procedure is subject to systematic uncertainties because the mis-modeling of the background and neutrino flux can bias the signal measurement.
- To improve background subtraction, the Data/MC ratio in the $E\theta^2$ sideband region (dominated by background events) is used to correct the MC background yield in the signal region.

• Genie modeling, neutrino flux, beam focusing, and detector response uncertainties are included in the total uncertainty calculation

$$
\Phi(Data) = \Phi(MC) \times \frac{N_{\nu-e}^{Data}}{N_{\nu-e}^{MC}}
$$

$$
N_{\nu-e}^{Data} = N^{Data} - N_{Background}^{MC}
$$

$$
N_{Background, corrected}^{MC} = N_{Background}^{MC} * C_{bkg}
$$

$$
N_{\nu-e}^{Data} = N^{Data} - N_{Background, corrected}^{MC}
$$

Flux Weights (100 Universes) Sideband

NOvA Simulation

Summary and Prospect

• Expect to see ~700 $\nu - e$ events in a 1.38E21 POT FHC sample, with a 8:1 signal/background ratio

• $v - e$ scattering is promising to constrain the flux uncertainty to ~6%. (Current, by the external hadron

- FOM-based cut optimization gives a promising result.
	- CNN-based classifiers could achieve better performance for separating νe events from backgrounds.
- The radiative correction in the νe elastic scattering covered the next-leading order effect of the amplitude
-
- We are working on systematic studies to estimate the uncertainties of our measurement.
- production measurement \sim 10%)
- Stay tuned!

Thanks!

NOvA Simulation

Training Sample

Training Sample Breakdown by interaction type

