Update on Solar Oscillations at Super-Kamiokande

Lluís Martí-Magro (Yokohama National University) NuFact (WG 1), Seoul (Korea) August 25^{th} , 2023.

Super-Kamiokande Detector

41	Am	39.3m		Wa pu Contr Ikeno Kamia	ater and a rification ol room -yama oka-cho, Gif 3km	Atotsu entranc	 50 13- sul ~2 8-ii 32 20- 	 So kton water 13+26 tons of Gd sulfate octahydrate ~2 m OD viewed by 8-inch PMTs 32 kt ID viewed by 20-inch PMTs 			
			SK-I	SK-II	SK-III	SK-IV	SK-V	SK-VI	SK-VII		
		Start - end	1996 Apr - 2001 Jul	2002 Oct - 2005 Oct	2006 Jul - 2008 Sep	2008 Sep - 2018 Mar	2019 Jan- 2020 Jul	2020 Jul- 2022 Jun	2022 July -		
	Captures	s on Gd						50%	75%		
	Number	ID (coverage)	11146 (40 %)	5182 (19 %)	11129 (40 %)	11129 (40 %)	11129 (40%)	11129 (40%)	11129 (40%)		
2		OD		1885							

Super-Kamiokande Detector

4	NAC			W pu Contr	ater and a rification ol room	Atotsu entrance	 Versa Solar Atmos Protos Super Super Neutr Indire and m 	atile det neutrinos spheric n n decay, novae, nova Rel inos, ct search	ector: s, eutrinos, lic
Ikeno-yama Ikm Kamioka-cho, Gifu Ikm Zkm Zkm Mozumi Sk									
		JJ.JIII	SK-I	SK-II	SK-III	SK-IV	SK-V	SK-VI	SK-VII
		Start - end	1996 Apr - 2001 Jul	2002 Oct - 2005 Oct	2006 Jul - 2008 Sep	2008 Sep - 2018 Mar	2019 Jan- 2020 Jul	2020 Jul- 2022 Jun	2022 July -
	Captures	s on Gd						50%	75%
	Number	ID (coverage)	11146 (40 %)	5182 (19 %)	11129 (40 %)	11129 (40 %)	11129 (40%)	11129 (40%)	11129 (40%)
3		OD				1885			

Solar neutrinos observation at SK

Solar neutrinos observation at SK

Solar neutrinos at SK

SK-IV:

<u>Good water quality control</u>

Lower threshold: **3.5 MeV** (kin).

Largest statistics among all phases: 2970 days and

<u>New electronics</u>

High speed signal processing.All PMT signal digitized. No deadtime.Better timing determination.Better MC model for trigger efficiency.

<u>Analysis</u>

6

Multiple Scattering Goodness (MSG). New spallation cut. Improvement in MC, energy reconstruction, etc.

Reduced systematics

⁸B flux: $2.33 \pm 0.01(\text{stat}) \pm 0.03(\text{sys}) \times 10^{6}/\text{cm}^{2}/\text{sec}$ \rightarrow this is: 1.3% cf. SK-I 3.2% SK-III 2.1%

Sun

SK

Solar neutrinos at SK

SK-IV:

<u>Good water quality control</u>

Lower threshold: **3.5 MeV** (kin). Largest statistics among all phases: 2970 days and

New electronics

High speed signal processing.All PMT signal digitized. No deadtime.Better timing determination.Better MC model for trigger efficiency.

<u>Analysis</u>

Multiple Scattering Goodness (MSG). New spallation cut. Improvement in MC, energy reconstruction, etc.

Reduced systematics

⁸B flux: $2.33 \pm 0.01(\text{stat}) \pm 0.03(\text{sys}) \times 10^{6}/\text{cm}^{2}/\text{sec}$ \rightarrow this is: 1.3% cf. SK-I 3.2% SK-III 2.1%

Sun

SK

Solar neutrinos at SK: Flux

Phase	Livetime [days]	DATA/MC	Flux \pm (stat) \pm (sys) x10 ⁶ /cm ² /sec
SK-I	1496	$0.453{\pm}0.005^{\scriptscriptstyle +0.016}_{\scriptscriptstyle -0.014}$	$2.38{\pm}0.02{\pm}0.08$
SK-II	791	$0.459 {\pm} 0.010 {\pm} 0.030$	$2.41{\pm}0.05^{\scriptscriptstyle+0.16}_{\scriptscriptstyle-0.15}$
SK-III	548	$0.458{\pm}0.008{\pm}0.010$	$2.40{\pm}0.04{\pm}0.05$
SK-IV	2970	$0.443{\pm}0.003{\pm}0.006$	$2.33{\pm}0.01{\pm}0.03$
Total	5805	$0.447{\pm}0.002{\pm}0.008$	$2.346 {\pm} 0.011 {\pm} 0.043$

SK-IV Energy Spectrum

SK-IV data analyzed, the largest phase for SK Adds a big new data set in the already reach SK solar data sample

SK Energy Spectrum (stat. only)

SK-IV data analyzed, the largest phase for SK Adds a big new data set in the already reach SK solar data sample v_{e} Survival Probability (P_{ee})

- SK data prefers a slight "upturn" while SNO's a "downturn"
- SK constrains tighter at low energy while SNO constrains more at higher energy
- Combined fit favours an "upturn" more strongly than SK data only.

Day/Night asymmetry (Δm_{21}^2

Day/Night asymmetry (Δm_{21}^2

Global neutrino oscillation

Global neutrino oscillation

Summary

- Super-Kamiokande's SK-IV (the longest phase and largest data set ~3k days) analysis has been finished.

- For SK-IV, many improvements have been made, ranging from hardware to software.

- Almost 64k solar events collected (total more than 101k)
- Almost 2k events in the lowest energy bin (3.5 4 MeV)
- New Flux: 2.346±0.011±0.043
- Slight preference for "upturn" in SK/SNO combined fit.
- 3.2 σ significance for Day/Night asymmetry.
- New oscillation parameters estimation from a global fit: $sin^2\theta_{12} = 0.306 \pm 0.013$

 $\Delta m_{12}^2 = 6.10 + 0.95 - 0.81 \times 10^5 \text{ eV}^2$

<u>A new paper is coming. Stay tuned!</u>

WIT System

SK's standard DAQ system:

Diagram by Y. Hayato Modified by Ll. Marti

WIT System

Computer cluster running parallel software trigger:

 $\frac{\text{WIT hosts:}}{\text{Online pre-supernova alarm.}} \begin{cases} \text{Triggers low energy events (electrons of } E_{kin} > 2.5 \text{ MeV}). \\ \text{Online pre-supernova alarm.} \\ \text{Online SN burst alarm and SN-triggered raw data saving system.} \end{cases}$

 $\frac{\text{WIT hosts:}}{\text{Online pre-supernova alarm.}} \begin{cases} \text{Triggers low energy events (electrons of } E_{kin} > 2.5 \text{ MeV}). \\ \text{Online pre-supernova alarm.} \\ \text{Online SN burst trigger and SN-triggered raw data saving system.} \end{cases}$

Removing Spallation Background

Variables: Δ_t , l_t and Q_{res} where: Δ_t = time diff. between candidate and muon Q_{res} = (Charge deposited) - (min. ionization)

→ Define PDFs→ Define log likelihood

Resulted in: 90% spallation events removed 20% deadtime

> <u>More details in:</u> arXiv:1606.07538 [hep-ex] arXiv:0508053 [hep-ex]

Spallation Removal in Super-Kamiokande-IV

Systematics

	SK-I	SK-II	SK-III	SK-IV
Threshold [MeV]	4.49	6.49	3.99	3.49
Trigger efficiency	$\pm 0.4\%$	$\pm 0.5\%$	$\pm 0.5\%$	$\pm 0.1\%$
Angular resolution	$\pm 1.2\%$	$\pm 3.0\%$	$\pm 0.7\%$	$\pm 0.1\%$
Reconstruction goodness	$^{+1.9}_{-1.3}\%$	$\pm 3.0\%$	$\pm 0.4\%$	$\pm 0.5\%$
Hit pattern	$\pm 0.8\%$	_	$\pm 0.3\%$	$\pm 0.4\%$
Small hit cluster	—	_	$\pm 0.5\%$	$\pm 0.1\%$
External event cut	$\pm 0.5\%$	$\pm 1.0\%$	$\pm 0.3\%$	$\pm 0.1\%$
Vertex shift	$\pm 1.3\%$	$\pm 1.1\%$	$\pm 0.5\%$	$\pm 0.2\%$
Second vertex fit	$\pm 0.5\%$	$\pm 1.0\%$	$\pm 0.5\%$	_
Background shape	$\pm 0.1\%$	$\pm 0.4\%$	$\pm 0.1\%$	$\pm 0.1\%$
Multiple scattering goodness	—	$\pm 0.4\%$	$\pm 0.4\%$	$\pm 0.4\%$
Livetime	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$
Spallation cut	$\pm 0.2\%$	$\pm 0.4\%$	$\pm 0.2\%$	$\pm 0.2\%$
Signal extraction	$\pm 0.7\%$	$\pm 0.7\%$	$\pm 0.7\%$	$\pm 0.7\%$
Cross section	$\pm 0.5\%$	$\pm 0.5\%$	$\pm 0.5\%$	$\pm 0.5\%$
Subtotal	$\pm 2.8\%$	$\pm 4.8\%$	$\pm 1.6\%$	$\pm 1.1\%$
Energy scale	$\pm 1.6\%$	$^{+4.2}_{-3.9}\%$	$\pm 1.2\%$	$\pm 0.8\%$
Energy resolution	$\pm 0.3\%$	$\pm 0.3\%$	$\pm 0.2\%$	$\pm 0.1\%$
⁸ B spectrum	$^{+1.1}_{-1.0}\%$	$\pm 1.9\%$	$^{+0.3}_{-0.4}\%$	$^{+0.3}_{-0.4}\%$
Total	$^{+3.5}_{-3.2}\%$	$^{+6.7}_{-6.4}\%$	$\pm 2.2\%$	$\pm 1.4\%$

Systematics

Energy [MeV]	3.49-3.99	3.99-4.49	4.49-4.99	4.99-5.49	5.49-5.99	5.99-6.49	6.49-6.99	6.99-7.49	7.49-19.49
Trigger efficiency	$^{+3.5}_{-3.2}\%$	$\pm 0.7\%$	_	_	_	_	_	_	_
Angular resolution	$\pm 0.2\%$	$\pm 0.2\%$	$\pm 0.2\%$	$\pm 0.1\%$	$\pm 0.1\%$				
Reconstruction goodness	$\pm 0.1\%$	$\pm 0.2\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.3\%$	$\pm 0.5\%$	$\pm 0.7\%$	$\pm 0.4\%$
Hit pattern	_	_	—	_	_	$\pm 0.5\%$	$\pm 0.5\%$	$\pm 0.4\%$	$\pm 0.4\%$
Small hit cluster	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	_	_	_	_	—	_
External event cut	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.1\%$	$\pm 0.2\%$
Vertex shift	$\pm 0.4\%$	$\pm 0.4\%$	$\pm 0.4\%$	$\pm 0.7\%$	$\pm 0.4\%$	$\pm 0.4\%$	$\pm 0.4\%$	$\pm 0.4\%$	$\pm 0.1\%$
Background shape	$\pm 2.7\%$	$\pm 0.6\%$	$\pm 0.6\%$	$\pm 0.2\%$	$\pm 0.1\%$				
Signal extraction	$\pm 2.1\%$	$\pm 2.1\%$	$\pm 2.1\%$	$\pm 0.7\%$	$\pm 0.7\%$				
Cross section	$\pm 0.2\%$	$\pm 0.2\%$	$\pm 0.2\%$	$\pm 0.2\%$	$\pm 0.2\%$	$\pm 0.2\%$	$\pm 0.2\%$	$\pm 0.2\%$	$\pm 0.2\%$
Multiple scattering goodness	$\pm 0.4\%$	$\pm 0.2\%$	$\pm 0.3\%$	$\pm 0.3\%$	$\pm 0.3\%$	$\pm 0.6\%$	$\pm 1.3\%$	$\pm 1.3\%$	_
Total	$^{+4.9}_{-4.8}\%$	$\pm 2.4\%$	$\pm 2.3\%$	$\pm 1.1\%$	$\pm 0.9\%$	$\pm 1.2\%$	$\pm 1.7\%$	$^{+1.8}_{-1.7}\%$	$\pm 0.9\%$

* 2019/Feb – 2020/Jul ** 2020/Jul - 2022/Jun

	SK-II After quick from PMT of 20% ID pho	recovery chain reaction otocoverage	SK-IV Front-end electronics and DAQ upgrade.		►SK- 0.01% 0 SK-Gd	•VI Gd by mass start!
					2020- 2022**	
1996/Apr - 2001/Jul	2002/Oct - 2005/Oct	2006/Jul - 2008/Sep	2008/Sep - 2018/Mar	20 20	19 - 20*	SK-VII 0.03% Gd
SK-I Pure water 40% ID photocove	erage	Full recovery 40% ID photo	ocoverage	D P	SK-V etector ref ure water	furbishment

* 2019/Feb – 2020/Jul ** 2020/Jul - 2022/Jun

	SK-II After quick from PMT of 20% ID pho	recovery chain reaction otocoverage	SK-IV Front-end electronics an DAQ upgrade.	nd	SK-VI 0.01% Gd by mass SK-Gd start!
1996/Apr - 2001/Jul SK-I Pure water 40% ID photocovers	2002/Oct - 2005/Oct	2006/Jul 2008/Sep SK-III Full recovery 40% ID photoc	2008/Sep - 2018/Mar	202 202 De Pu	19 - 20* SK-V etector refurbishment are water
Gadzooks!		M. Bosh, ¹ Y. H. Ishi N. J. Grid P. Fern ¹ ² <i>Reark Institutes</i> ³ <i>Department</i> ³ <i>Department</i> ⁴ <i>Department</i> ⁴ <i>Depart</i> <i>The</i> <i>Reark</i>	DEDUCTOR DEPUTION	First Gadd K. Abe ^{a,ai} , C. S. Imaizumi ^a , J. M. Miura ^a , S. Nakayana ^a , M. Y. Takemoto ^a , S. Han ^b , T. Kajita ^b B. W. Pointon J. L. Stome ^{i,a} , W. R. Kropp ^{1,a} , W. R. Kropp ^{1,a} , W. R. Kropp ^{1,a} , V. Takhistov ^{k,a} , K. Scholberg ^{k,a} , S. El Hedri ¹ , A. B. Quilan ¹ , T. I. L. H. V. Anthor S. Cao ² , V. Berr L. N. Machado ¹ , G. M. Martiazz ¹ , N. M. Friend ⁴ , T. T. Steiguch ³ , T. T. Steiguch ³ , T. T. Shiozawa ³ , K. M. ² V. Ashida ^{4,a} , J. Fen R. A. Wendel ¹ P. Mehta ^{4,a} , K. M. ² K. Satol ⁴ , K. M. ² S. Io ⁴⁰ , F. K. M. ²	 Jinium Loading to Super-Kamiokande Bronner*, Y. Hayato**, K. Hiraide*, M. Ikoda**, Komela**, K. Kanemura*, Y. Katoka*, S. Miki*, *, S. Moriyama**, Y. Nagao*, M. Nakahata**, *, S. Moriyama**, Y. Nagao*, M. Nakahata**, *, T. Okuda*, K. Okamota*, A. Orii*, G. Pronost*, Shiozawa**, Y. Sonoda*, Y. Suzuki*, A. Takeda**, A. Takenaka*, H. Tanaka*, S. Watanabe*, T. Nanof, A. Takenaka*, H. Tanaka*, S. Watanabe*, T. Sandiya*, *, K. Okumur**, T. Tashivo*, J. Xu*, G. D. Megias*, *, G. Vanary**, T. Tashivo*, J. Xia*, G. D. Megias*, *, K. Okumur*, J. Bian*, N. J. Griskevich*, S. Locke*, S. Mine*, M. B. Smykat, H. W. Sobel**, Y. Water**, L. Bernard*, A. Coffani, O. Drapier*, Giampoolo, M. Gonin', Th. A. Mueller', P. Paganini', shizuka*, T. Nakamara*, J. S. Jang*, J. G. Learned*, yi D. Marin*, M. Scott*, A. S. Sztuc*, Y. Uchida*, urdi*, G. Collzavo!, F. Laeob*, M. Lamoureux*, Ospina*, L. Ladovici, Y. Mackawa*, Y. Nishimura*, Nagagwa*, T. Kiaka*, J. S. Yamamoto*, A. Alkapu*, Nakadara*, K. Nakamura*, Y. Oyama*, K. Sakashira*, T. Tsukuto*, T. Baschi*, J. Sama*, H. Mejod*, T. Nakaya***, Nakadara*, K. Nakamura**, N. Mori*, T. Nakaya***, Makadara*, K. Nakama*, M. Mari*, T. Nakaya***, Mara*, K. Yasutome*, P. Fernandez*, N. McCauley**, Tasiwak*, Y. Kushawa*, H. Manjo*, H. Makaya**, Makadara*, J. Lang*et, C. Wakaya**, H. Makaya**, Makadara*, K. Makaya*, H. Mary**, T. Nakaya***, Makadara*, K. Jama*, M. Merri*, T. Nakaya***, Makadara*, K. Makaya*, H. Maya**, H. Makaya**, Makadara*, Y. Inakawa*, H. Manjo**, K. Nakaya***, Makadara*, Y. Kawa*, H. Manjo**, K. Nakaya***, Makadara*, Y. Kawa*, H. Manjo**, T. Niwa*, Makaya**, M. Maria*, Y. Nakaya**, H. Makaya**, Makadara*, Y. Kawa*, H. Manjo**, K. Nakaya***,

* 2019/Feb – 2020/Jul ** 2020/Jul - 2022/Jun