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Hyper-K
• Builds on the success of Super-Kamiokande

• Water Cherenkov detector, 186 kton fiducial

• 20 000 inner detector 50 cm PMTs

• Rich physics program
▪ Proton decay

▪ Atmospheric neutrinos

▪ Supernova + relic supernova

▪ Solar neutrinos

▪ Beam LBL neutrino oscillation

HK p->e+ π0 decay sensitivity

HK Supernova neutrino appearance spectrum 
10 kpc

doi:10.3847/1538-4357/abf7c4

HK LBL νμ spectrum
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(See talk by N. McCauley for more)

Now

2045



Hyper-K LBL Program
• Builds on success of T2K

• Produce a high-power, selectable νμ or νμ dominated neutrino beam at J-PARC

• Measure neutrino flux and cross section with detectors close to beam source, before 
oscillation

• Observe neutrinos 295km from source in Hyper-K, after they have oscillated
▪ Two observable channels: νμ → νμ and νμ → νe

▪ Use knowledge of flux and interactions from near detectors to extract oscillation information

_
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Hyper-K LBL Physics Goals

• Does sin2θ23 = 0.5?
▪ If not, which octant is it?

• Precision measurement of Δm2
32

• Independent cross-check on reactor θ13 measurements

• Mass ordering with LBL + atmospheric

• Do neutrinos violate CP symmetry? 
▪ If so, what is the value of δCP

▪ Key information for baryon asymmetry

PRD.106.032004

Global beam & atmospheric results

T2K δCP result

arXiv:2303.03222
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The Hyper-K LBL Experiment
• To achieve these LBL physics goals, Hyper-K needs:

▪ Huge increase in statistics over existing LBL experiments:
186 kton fiducial mass, >8 times that of Super-K

1.3 MW νμ or νμ dominated neutrino beam, more than double T2K beam power

Combined, over 10 years of running, 1:3 ν:ν mode, expect ≈×40 current T2K far-detector statistics

▪ Improvement in understanding of neutrino flux, cross section and detector effects:
Suite of new and upgraded near detectors

Bottom-up approach to detector systematics

_
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νμ disappearance

• The majority of events seen at HK will be νμ → νμ

• Position and strength of oscillation dip gives Δm2
32 and 

sin22θ23

sin22θ23

Δm2
32

νμ-like events, 10 years, sin2 θ23=0.58, Δm2
32=2.509x10-3eV2, normal ordering
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νμ νμ νe νe νμ

→ νe

νμ

→ νe

NC Total

ν-mode
νμ CCQE-like

8584 480 0.24 0.01 2.32 0.01 283 9349

ν-mode
νμ CCQE-like

4399 7688 0.28 0.24 0.33 0.42 286 12375

_ _ _

_

_



νe appearance

• Sensitivity to δCP and octant of θ23 comes primarily 
from νμ → νe oscillations

• δCP changes νe and νe oscillation probability in opposite 
directions

_

νe-like events, 10 years, sin2 θ23=0.58, Δm2
32=2.509x10-3eV2, normal ordering
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δCP = -π/2 δCP = 0 δCP = +π/2 δCP = +π

ν-mode
νe CCQE-like

2740 2285 1846 2301

ν-mode
νe CC1π-like

258 223 179 214

ν-mode
νe CCQE-like

1624 1883 2118 1859

_



Aside: νe cross section

• HK's δCP sensitivity derives from νe/νe appearance 
rate

• νe/νe cross-section ratio can also affect this

• T2K currently uses a 4.9% prior uncertainty on this 
ratio with very little data constraint.

• This would limit δCP sensitivity, HK intends to 
measure this ratio as precisely as possible, with 
current studies focused on a 2.7% precision

_

_

8Charlie Naseby 25 Aug 2023Imperial College London



ND280
• Magnetised plastic scintillator and TPC near detector

• Constrain neutrino flux, interaction cross section and wrong-sign component

• Currently undergoing upgrade with higher granularity super Fine Grained Detector 
(sFGD) and high angle TPCs. (See talks by L. Munteanu, D. Nguyen)

• Upgrade provides better e/γ separation and lower proton momentum threshold due 
to higher granularity of sFGD
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DOI:10.1088/1748-0221/15/12/p12003
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Intermediate Water Cherenkov Detector
• 600 t water Cherenkov detector ~1km from the beam 

in a vertical shaft

• Pion/muon decay kinematics results in different 
neutrino fluxes along the shaft (see M. Wilking's talk)

• Small multi-PMTs provide high-granularity and time 
resolution in a relatively small detector

• Excellent e/μ PID, combined with large target mass, 
IWCD can select the 1% νe component of the beam

~1km
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νμ Flux



IWCD νe measurement

• Current IWCD fit uses six samples: νe, νμ and NCπ0, each 
in ν and ν mode

• Select over 18000 νe events in ν-mode

• νμ (>1M ν mode events) constrains CC cross section & 
flux, NCπ0 constrains NC background to νe samples

• Integrating over HK νe appearance spectrum, obtain 
2.94% uncertainty on νe/νe rate ratio with analysis 
improvements possible

• Total uncertainty is lower than on each individual 
parameter due to correlations

• Preliminary studies with ND280 upgrade + IWCD 
achieve better than 2.7% uncertainty, helped by ND280 
charge selection
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Analysis Procedure
• To obtain oscillation parameter constraints from these HK spectra, adopt an approach 

similar to T2K

• Use a near detector to constrain a model of flux and neutrino interaction cross-section

• Add selected constraints from the IWCD fit and ND upgrade studies

• Use this constrained systematic model in an oscillation fit to the far-detector data

ND280 Fit

Externally constrained 
xsec model

Externally-constrained 
flux model

ND280 detector model
ND-constrained flux 

and xsec model
HK FD fit

Detector model

Oscillation 
Parameter 
constraints

Externally-constrained 
oscillation model
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Selected IWCD & ND 
Upgrade constraints



Systematic modelling

• Making use of T2K 2018 model for flux, cross section and detector systematics.

• Three scenarios investigated:

▪ Statistics only, no flux, cross section or detector uncertainty

▪ T2K 2018 systematics, T2K ND fit with 2018 statistics and 2018 SK detector 
uncertainties

▪ HK Improved systematics, T2K 2018 ND fit systematics scaled by sqrt(NT2K/NHK), 
preserving correlations

▪ A 1% minimum uncertainty is enforced on all parameters

▪ Additional constraint from IWCD and ND280 upgrade on specific parameters

▪ 2.7% error on νe/νe cross-section ratio
_
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Physics Sensitivities
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CP violation sensitivity
• Ability to exclude δCP = 0, ±π as a function of true δCP

• Systematic uncertainties play a key role in sensitivity

• Beam + atmospherics improves sensitivity over beam alone when MO is unknown
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Improved syst.

Beam only, known MO Beam + atmospherics, unknown MO



CP violation sensitivity
• Fraction of δCP values excluding CP conservation as a function of exposure

• Exclude CP conservation to 5σ for >60% of true δCP values, >75% to 3σ
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δCP Resolution

• 1σ precision on the measurement 
of δCP

• Ranges between 6 and 20 degrees

• Lowest precision around maximal 
CP violation where νe event rate 
changes most slowly

• νe/νe cross-section is leading 
systematic and most significant 
close to CP conserving values

_
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θ23 Precision & Octant
• Measurement precision depends strongly on true θ23 value

• Beam only, improved systematics can exclude wrong-octant to 3σ for true

sin2θ23 < 0.47 or sin2θ23 > 0.55
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Δm2
32

• 1σ precision on Δm2
32 has a small dependence on θ23 value

• 1σ precision measurement 9×10-6 eV2 possible, cf. 50×10-6 eV2 from T2K

• Improved systematic model increases precision by 30% over existing systematics
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Conclusions
• HK will provide great sensitivity to neutrino oscillation parameters:

▪ 5σ CP violation sensitivity for >60% of true δCP values

▪ 6-20 degree precision on measurement of δCP, depending on true value

▪ 3σ rejection of wrong-octant of θ23 for sin2θ23 < 0.47 or sin2θ23 > 0.55

▪ 0.4% precision on Δm2
32 measurement

• Ability to constrain systematic uncertainties will be key to precise measurement

• Development of analysis tools for HK is ongoing

• Construction is progressing on track for 2027 data taking
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Backups
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CP sensitivity unknown MO

22

True normal ordering True inverted ordering



IWCD Fluxes
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NuMu appearance spectra
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NuE appearance spectra
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NuMu oscillation probability

26



NuE Appearance Probability
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J-PARC beam

• 30GeV J-PARC proton main 
ring

• Intend to run at 1.16 s 
repetition, up to 1.3 MW

• Three 320 kA focusing horns

doi.org/10.1016/j.nima.2013.06.105

30GeV MR

28
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