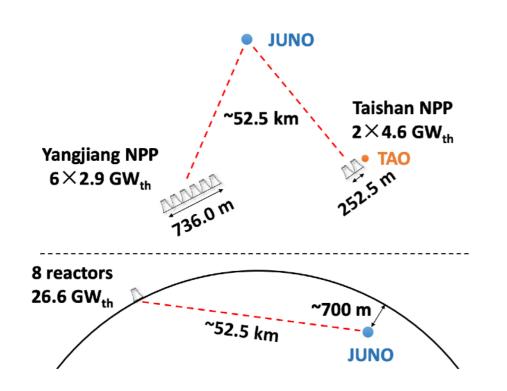
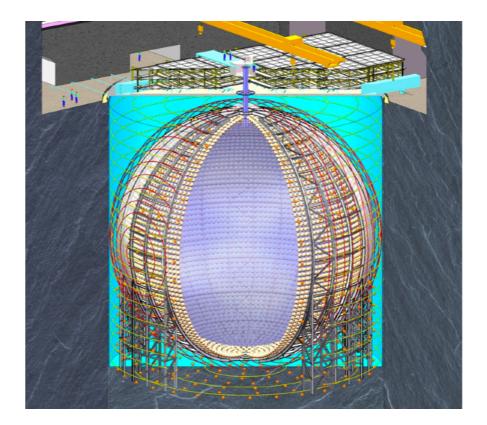
Reactor Antineutrino Oscillations with JUNO

= 1000 1000 1000 -----

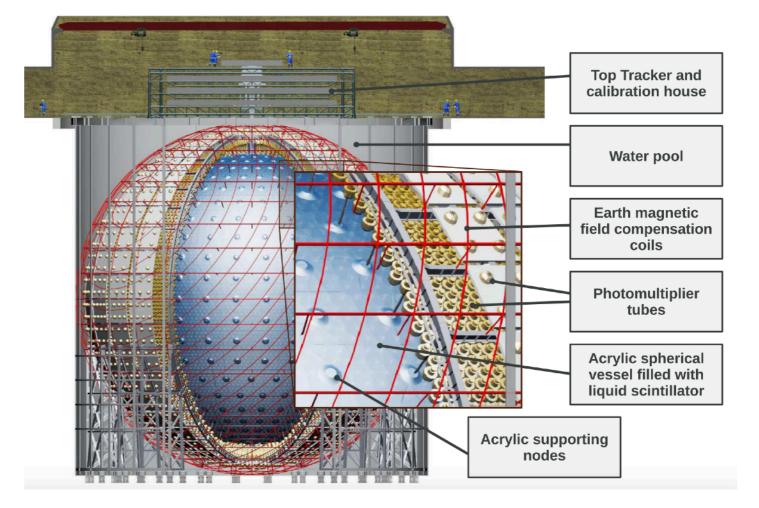
Roberto Mandujano University of California, Irvine *On Behalf of the JUNO Collaboration*


24th International Workshop on Neutrinos from Accelerators August 22nd, 2023



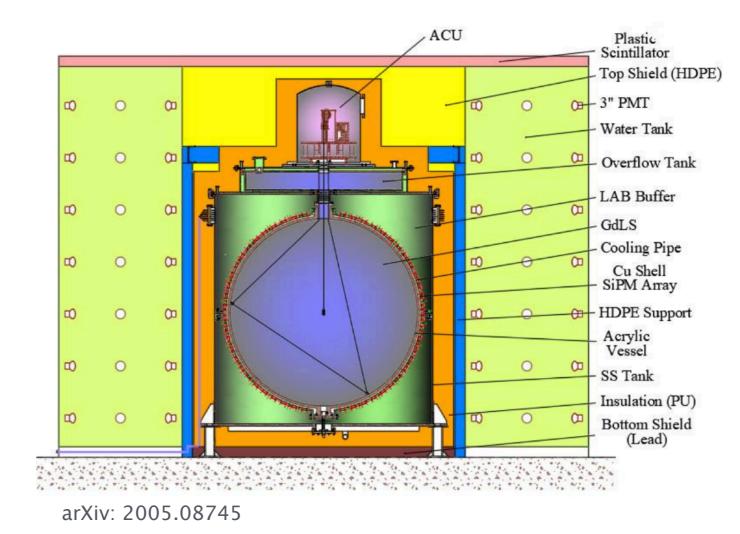
JUNO Overview

- The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator neutrino detector under construction in China
- At 20 kton, it will be the largest detector of its kind ever built
- Multi-purpose experiment with rich physics portfolio
- Main physics goals are neutrino mass ordering (NMO) determination and precision measurement of neutrino oscillation parameters



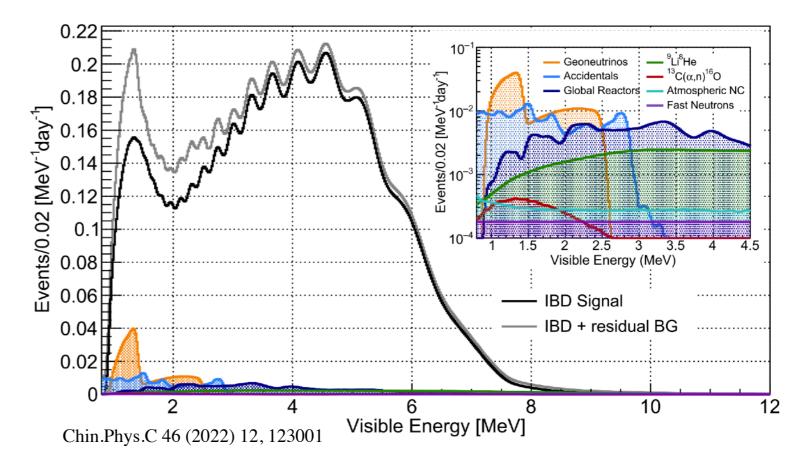
Detector Design

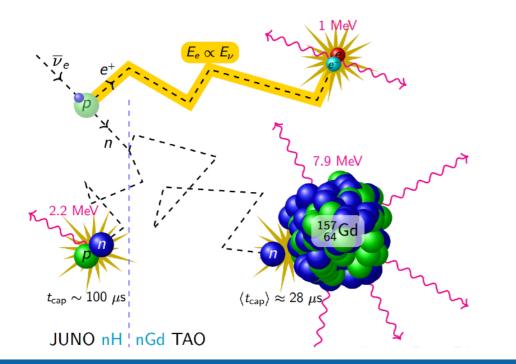
- 35.4 m diameter acrylic sphere filled with 20 kton of liquid scintillator (LS)
 - LS designed for high light yield and low attenuation
- 17,612 20" PMTs (LPMT) and 25,600 3" PMTs (SPMT)
 - ~78% photo-coverage
 - ~30% detection efficiency (LPMT)
- Instrumented outer water tank and top scintillator panels serve as muon background veto, reconstruct muon tracks, and provide shielding from natural radiation
- Unprecedented 3% energy resolution at 1 MeV



NuFact 2023

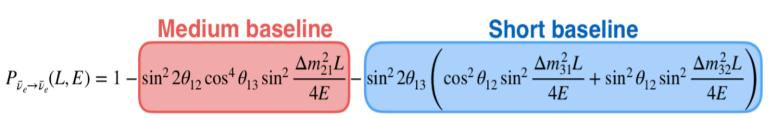
- JUNO-TAO (Taishan Antineutrino Detector) will be a satellite detector
 - 44 m from 4.6 GW_{th} reactor
 - ~1 ton GdLS fiducial volume
 - Instrumented with SiPM providing <~2% at 1 MeV energy resolution
 - Operates at -50 C
- Measure reactor antineutrino energy spectrum with excellent resolution
 - Reference spectrum for JUNO, removing possible model dependence from NMO measurement
 - Search for sterile neutrinos



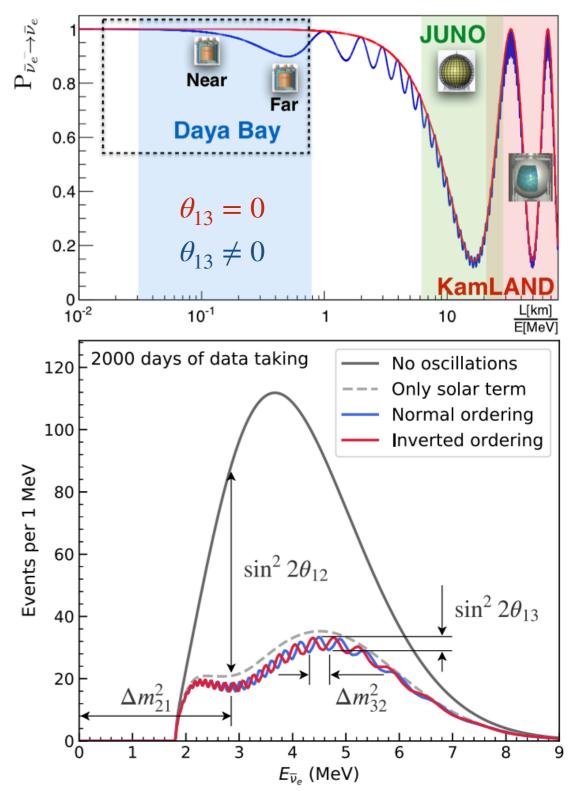


0

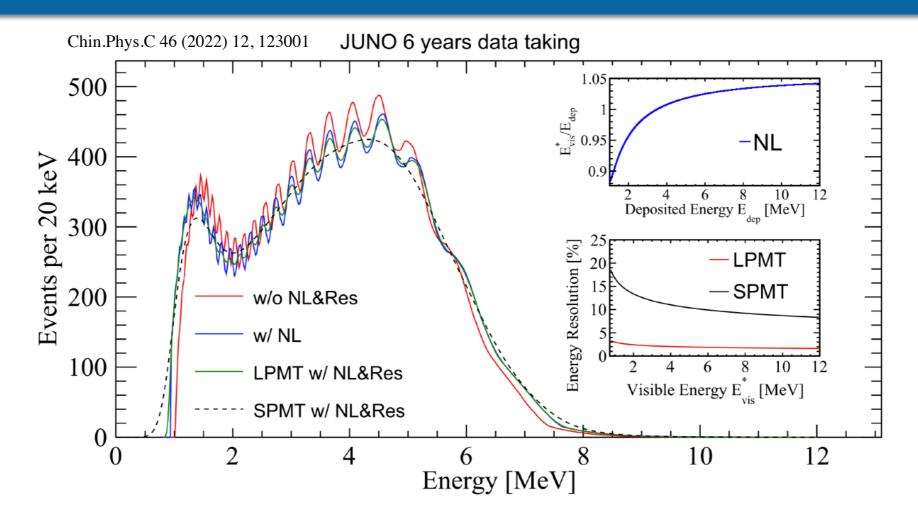
- Reactor $\bar{\nu}_e$ detected through Inverse Beta Decay reaction
 - $\bar{\nu}_e + p \rightarrow e^+ + n$
 - Positron (prompt) signal followed by neutron capture (delayed)
 - Temporal and spatial coincidence of prompt and delayed signals is a powerful handle to extract reactor neutrino signal



		Correlated					Uncorrelated		
Event Type	Reactor IBD	Fast- n	9Li/ 8H e	Alpha- n	Geo-v	Global Reacto r	Accidental s	Atm. -v	
Rate [per day]	47	0.1	0.8	0.05	1.2	1	0.8	0.16	

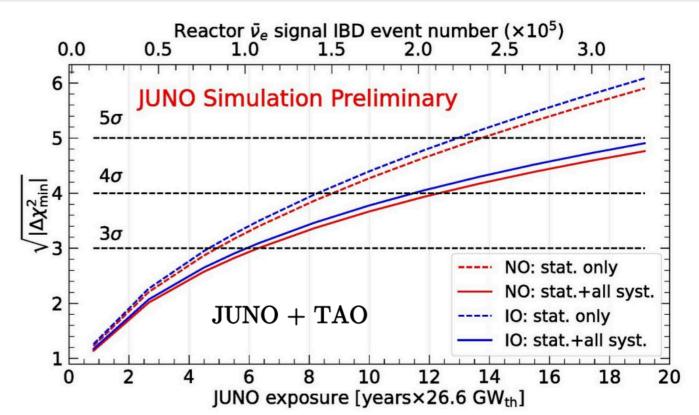

Reactor $\bar{\nu}_e$ Oscillations

- Observation of $\theta_{12}, \theta_{13}, \Delta m^2_{21}$, and Δm^2_{32} driven oscillations
- Determination of NMO through interference effects in fine structure of oscillated spectrum (allowed by large θ_{13})
 - JUNO-TAO energy spectrum provides precise reference of un-oscillated JUNO energy spectrum
 - Independent of δ_{cp} , octant of θ_{23} , no reliance on matter effects
 - Complementary to accelerator and atmospheric measurement (different baseline, energy, flavor and technology)


Chin.Phys.C 46 (2022) 12, 123001

Updated Sensitivities

- Recent sensitivity study with full treatment of systematics using updated assumptions and measurements:
 - Updated number of reactors
 - Realistic simulation and veto efficiencies
 - Final detector overburden and location information
 - Spectral shape constraints from JUNO TAO included

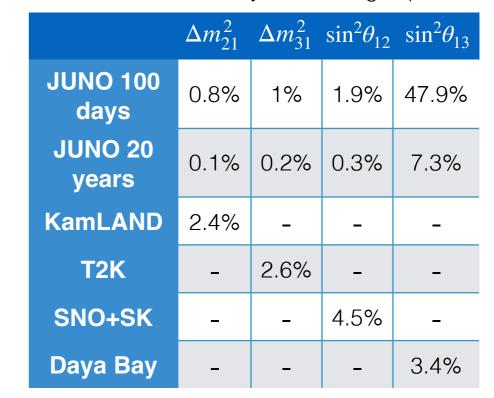

Neutrino Mass Ordering

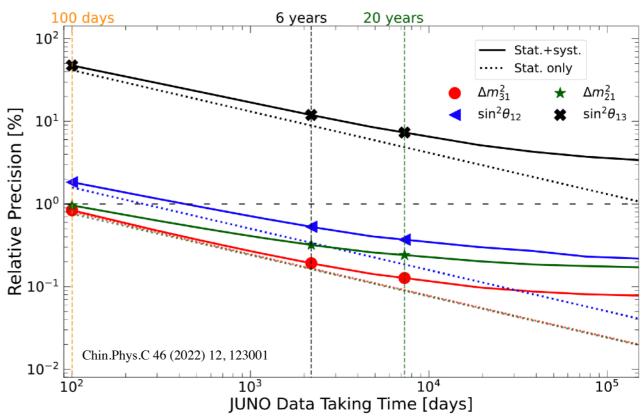
 Fit energy spectrum under normal and inverted ordering hypotheses

$$\Delta \chi^2_{min} = \mid \Delta \chi^2_{min}(NO) - \Delta \chi^2_{min}(IO) \mid$$

- ~3 σ NMO sensitivity in 6 years
 - Independent of δ_{cp} , octant of θ_{23}
 - Complementary to accelerator measurement (different baseline and technology)
 - Paper under preparation

			1						
		$\Delta \chi^2_{\rm min}$		st	tat. +	1 sy	/st.		
	Statistics	11.3							
	Stat.+Flux error	-0.6							
	Stat.+Backgrounds	-1.4							
	Stat.+Nonlinearity	-0.4							
	Stat.+Others	< -0.05							
	Total	9.0							
JUNO Simulation Preliminary 0 2					4 0	6	8	10	12





NuFact 2023

JUNO Relative Uncertainty vs. Leading Experiments

- Measurement of $\sin^2\theta_{12}$, Δm^2_{21} and Δm^2_{31} to sub-percent precision with O(100 days) data
 - 6 years for order of magnitude improvement over existing constraints
 - Precision tests of neutrino oscillations and U_{PMNS} unitarity (1%)

Systematics

- Updated treatment of systematics
 - Values for 6 year exposure shown
- Rate systematics mitigated by spectral shape constraint on normalization

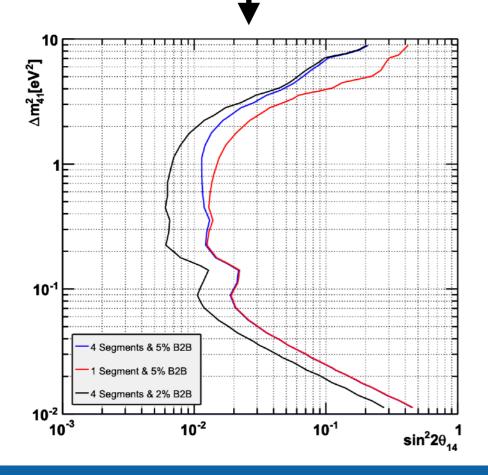
Δm_{31}^2	1σ (%)]
Statistics	0.17	
Reactor:		
- Uncorrelated	< 0.01	
- Correlated	0.01	
- Reference spectrum	0.05	
- Spent Nuclear Fuel	< 0.01	
- Non-equilibrium	< 0.01	
Detection:		
- Efficiency	0.01	
- Energy resolution	< 0.01	
- Nonlinearity	0.04	
- Backgrounds	0.04	
Matter density	0.01	
All systematics	0.08	
Total	0.19	
	0	0.0 0.1

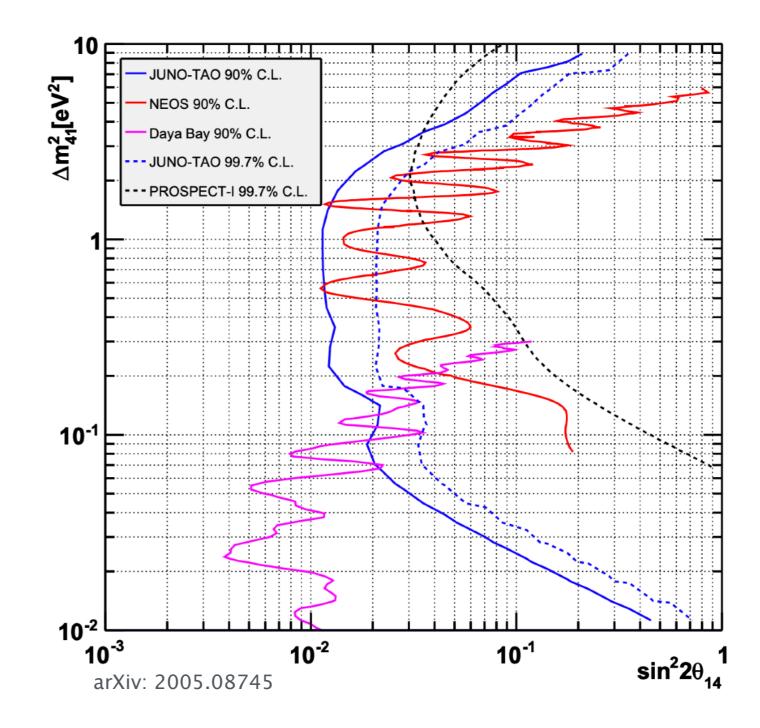
%

				/0		
$\sin^2 \theta_{12}$	1σ (%)]				
Statistics	0.34					
Reactor:						
- Uncorrelated	0.10					
- Correlated	0.27					
- Reference spectrum	0.09					
- Spent Nuclear Fuel	0.05					
- Non-equilibrium	0.10					
Detection:						
- Efficiency	0.23					
- Energy resolution	0.01	1				
- Nonlinearity	0.09					
- Backgrounds	0.20					
Matter density	0.07					
All systematics	0.40					
Total	0.52					
	0	.0	0.2		0.4	
				%		

Δm_{21}^2	1σ (%)]
Statistics	0.16	
Reactor:		
- Uncorrelated	0.01	
- Correlated	0.03	
- Reference spectrum	0.07	
- Spent Nuclear Fuel	0.07	
- Non-equilibrium	0.14	
Detection:		
- Efficiency	0.02	
- Energy resolution	0.01	
- Nonlinearity	0.05	
- Backgrounds	0.18	
Matter density	0.01	
All systematics	0.27	
Total	0.32	
	0	.0 0.2

%


$\sin^2 \theta_{13}$	lσ (%)			
Statistics	8.94			
Reactor:				
- Uncorrelated	2.53			
- Correlated	6.83			
- Reference spectrum	3.48			
- Spent Nuclear Fuel	1.55			
- Non-equilibrium	2.65			
Detection:				
- Efficiency	5.81			
- Energy resolution	0.39			
- Nonlinearity	2.09			
- Backgrounds	4.89			
Matter density	0.98			
All systematics	8.16			
Total	12.11			
		0	5	10
			%	



- With its short baseline, TAO has great potential in sterile oscillation searches
 - Sensitivity improved by virtual segmentation of detector

Construction Progress

Steel Support Structure finished

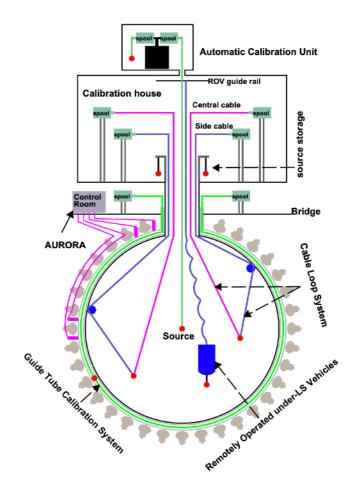
Top hemisphere of acrylic vessel finished

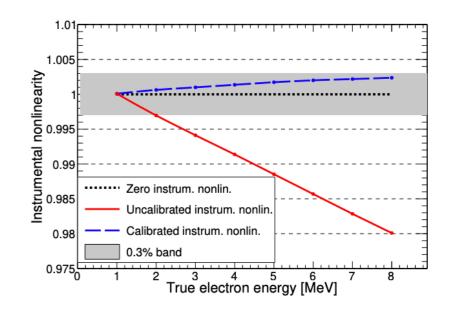
PMT and electronics installation ongoing!

- JUNO is a precision, multi-purpose experiment with a rich portfolio in neutrino, astroparticle, and new physics searches
- Using its reactor $\bar{\nu}_e$ dataset:
 - NMO measurement to 3σ in about 6 years
 - Sub-percent precision for $\sin^2\!\theta_{12}$, Δm^2_{21} and Δm^2_{31} with as little as O(100) days of data
- Much progress has been done in construction and commissioning, with data-taking starting next year!
- Stay tuned for our exciting results!

Neutrinos from Near and Far

Solar v's Hundreds/day Supernova v's 5000 IBDs for Cosmic muons CCSN @10 kpc ~ 250k/day Atmospheric v's v_µ Several∕day ~700 m 26.6 GW_{th}, 53 km reactor v's ~ 60/day Geo-v's 1-2/day





- Comprehensive calibration strategy
 - Gamma/neutron sources, cosmogenic ¹²B and UV laser
 - Multi-positional source deployment
- SPMTs serve as linear reference for LPMT nonlinearity
 - Operate in photon-counting mode for ~1-10 MeV
- Dual Calorimetry Calibration compares LPMT charge to SPMT charge under same source
 - Channel-wise LPMT charge vs. total SPMT charge
 - UV laser energies span region of interest
 - Gamma sources match time profile of neutrino (positron) signal
 - Absolute energy scale uncertainty <1%

J. High Energy. Phys. 2021, 4 (2021).

