Inclusive Antineutrino Nucleus Scattering Analysis at MINER ν A

Prameet Kumar Gaur

Department of Physics, Aligarh Muslim University, Aligarh -202001 prameetgaur@gmail.com

1. Why MINER ν A ?

MINER ν A is a dedicated high statistics $\nu(\bar{\nu})$ -A scattering experiment, which is the first of its kind, using different nuclear targets viz. C, Fe and Pb in the same (anti)neutrino beam. The goal of the MINER ν A experiment include :

- Cross sections for ν and $\overline{\nu}$ scattering off nucleons bound inside the nuclear target and deep inelastic scattering, where high energy (anti)neutrinos probe deep inside the nucleons and see individual quarks.
- Medium effects This is to study how Z and A or targets affect neutrino interactions. This is done by using various upstream targets like iron, lead, carbon and water. The motivation is to understand nuclear medium effects in a wide range

of Bjorken x and Q^2 .

• Final state interactions The understanding of nuclear medium effects will shed light on the hadron dynamics in the presence of axial vector response function.

2. The NuMI beamline 1035 m Muon Monitors Decay Pipe **Target Hall** Absorber **Carbon Target** muon (μ^*) pion (π^*) 120 GeV Protons from Main Injector $\boldsymbol{\nu}$ 675 m 5 m 12 m 18 m 210 m MINERvA detector Hadron (pion) Monitor About 100 m underground Focusing Horns Rock • The NuMI beamline uses 120 GeV protons on 0.14 - Low Energy a graphite target to produce neutrino beams of 0.12 0.08 0.10 3 GeV and 6 GeV energy.

6. Migration Matrix

- The unfolding matrix makes sure that we remove the smearing in the measurement of a variable due to detector effects.
- The unfolding matrix U_{ij} maps a reconstructed variable from the j bin to true variable in the i bin.
- This makes sure, that we use the most suitable binning for unfolding procedure.

- The magnetic horn current can be reversed to select $\bar{\nu}_{\mu}$ or ν_{μ} beam.

10 20 30 40 50 60 70 80 Reconstructed x_{Bi} per Q² Bins

Binning for x (Left) :[0, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 0.9, 1, 1.75]Binning for W (Right) : [0,2,5,8,10]

7. Efficiency Correction

• The set of event selection cuts used to isolate the signal are unable to reconstruct some fraction of the signal events, which we can by the

3. Analysis Goal

The goal of my analysis is to calculate double differential **inclusive** $\bar{\nu}_{\mu}$ cross section

We use the following formula to extract cross sections:

$$\left(\frac{d^2\sigma}{dxdQ^2}\right)_{\alpha\beta} = \frac{\sum_{ij}U_{ij\alpha\beta}(N_{\text{data},ij} - N_{ij}^{\text{Bkgd}})}{A_{\alpha\beta}(\Phi T)(\Delta x)_{\alpha}(\Delta Q^2)_{\beta}}$$

which involves event selection(N_{data}), background subtraction(N^{Bkgd}), unfolding(U), efficiency correction(A) and bin width normalisation($\Delta x, \Delta Q^2$).

The

rent

above equation.

• Therefore, an efficiency correction is applied to the cross-section calculation to recover the true signal distribution.

8. Conclusions

- 2 dimensional plots for event distribution with contribution from various channels, efficiency distribution plots, and migration matrices have been successfully obtained.
- Background subtraction has been successfully performed.
- Suitable binning has been chosen for unfolding procedure using the migration matrices obtained.
- After performing the unfolding study, the double differential cross section in bins of x and Q^2 or W and Q^2 will be ready to be extracted.