

Investigation of scalar Non-Standard Interactions at P2SO and DUNE

Dinesh Kumar Singha¹, Rudra Majhi¹, Lipsarani Panda², Monojit Ghosh³, and Rukmani Mohanta¹ University of Hyderabad, India¹, National Institute of Science Education and Research, India² and Ruder Bošković Institute, Croatia³ dinesh.sin.187@gmail.com

Introduction

- Neutrino oscillation experiments provide us a unique platform to explore new physics beyond the Standard Model.
- One such new physics scenarios can be the non-standard interactions (NSIs) of neutrinos with earth matter. In this context vector mediated NSI is more popular in literature.
- Generally, vector mediated NSI appears in Hamiltonian as a matter potential term.
- However, NSIs can be mediated by scalar fields (SNSI) also via Yukawa interactions. • Hence, SNSI parameters modify the neutrino masses.

Bounds on SNSI parameters

• As the NSIs are matter dependent \longrightarrow we have studied their effects in two neutrino oscillation experiments with high baselines (P2SO and DUNE).

Theoretical Background

The effective Lagrangian for SNSI can be written as

$$\mathcal{L}_{\text{eff}} = \frac{y_f y_{\alpha\beta}}{m_{\phi}^2} (\bar{\nu}_{\alpha} \nu_{\beta}) (f\bar{f}), \qquad (1)$$

where m_{ϕ} is the mediator scalar mass, and y's are the Yukawa couplings. The Dirac equation in the presence of SNSI can be expressed as

$$\nu_{\beta} \left[i \partial_{\mu} \gamma^{\mu} + \left(M_{\beta \alpha} + \frac{\sum_{f} N_{f} y_{f} y_{\alpha \beta}}{m_{\phi}^{2}} \right) \right] \nu_{\alpha} = 0, \qquad (2)$$

here $M_{\beta\alpha}$ is the neutrino mass matrix and N_f is the number density of the fermion in the earth. The contribution of SNSI can be parameterized by the matrix

$$\delta M = \sqrt{|\Delta m_{31}^2|} \begin{pmatrix} \eta_{ee} \ \eta_{e\mu} \ \eta_{e\tau} \\ \eta_{\mu e} \ \eta_{\mu\mu} \ \eta_{\mu\tau} \\ \eta_{\tau e} \ \eta_{\tau\mu} \ \eta_{\tau\tau}. \end{pmatrix}$$
(3)

Here, $\sqrt{|\Delta m_{31}^2|}$ is just a scaling factor and η 's are the dimensionless interaction strengths. For our study, we have just focused on the diagonal SNSI parameters η_{ee} , $\eta_{\mu\mu}$ and $\eta_{\tau\tau}$. The Hamiltonian in flavor basis can be written as

$$H = E_{\nu} + \frac{M_{eff} M_{eff}^{\dagger}}{2E_{\nu}} + V, \qquad (4)$$

where $M_{eff} = U \operatorname{diag}(m_1, m_2, m_3) U^{\dagger} + \delta M$.

- The above plots show the bound on SNSI parameters η_{ee} , $\eta_{\mu\mu}$ and $\eta_{\tau\tau}$ at P2SO and DUNE experiments at 3σ C.L.
- \star P2SO provides stringent bounds on SNSI parameters compared to DUNE experiment except η_{ee} .

Allowed region plots

• These plots show the allowed region in $\eta_{\alpha\beta}$ (test) - Δm_{31}^2 (test) plane at 3 σ C.L. • The sensitivity of the experiments to measure Δm_{31}^2 depletes in the presence of $\eta_{\mu\mu}$ and $\eta_{\tau\tau}$.

Effect on Mass Hierarchy

Experimental Details

- We have used General Long Baseline Neutrino Experiments (GLoBES) [1,2] software and additional plugins to simulate the experiments Protvino to Super-ORCA (P2SO) and Deep Underground Neutrino Experiment (DUNE) and to incorporate SNSI.
- P2SO configuration $(3\nu + 3\overline{\nu})$ [3]:

- The parameter η_{ee} has significant effect on mass hierarchy sensitivity compared to the other SNSI parameters.
- The effect of positive and negative value of η parameters are quite opposite for ee and $\tau\tau$ case.
- Hierarchy sensitivity is not much affected by $\eta_{\mu\mu}$.
- P2SO is more sensitive to mass hierarchy compared to DUNE because of more matter interactions.

Conclusion

- Both P2SO and DUNE are sensitive to scalar non-standard interactions.
- Appearance channel is sensitive to η_{ee} , whereas both appearance and disappearance channel are sensitive to $\eta_{\mu\mu}$ and $\eta_{\tau\tau}$.
- Probability for the positive (negative) value of η_{ee} is higher (lower) compared to the standard case. This effect is opposite for $\eta_{\mu\mu}$ and $\eta_{\tau\tau}$.
- Stringent bounds on SNSI parameters can be obtained from DUNE and P2SO.
- The parameters $\eta_{\mu\mu}$ and $\eta_{\tau\tau}$ worsen the measurement of Δm_{31}^2 .
- Effect on mass hierarchy is more (less) from η_{ee} ($\eta_{\mu\mu}$) sector.
- In general sensitivity of P2SO experiment is better than DUNE with the exception of η_{ee} .

Acknowledgement

DKS would like to acknowledge Prime Minister's Research Fellowship.

- -Beam power of 450 KW corresponding to $POT = 4 \times 10^{20}$ per year.
- -Super-ORCA is an upgraded water Cerenkov detector with 10 times more denser detector geometry compared to ORCA.
- DUNE $(6.5\nu + 6.5\overline{\nu})$ [4]: Beam power of 1.2 MW corresponding to POT = 1.1×10^{21} per year with a liquid argon time projection type detector.

• Values of oscillation parameters are taken from NuFit v5.2 [5].

References

- [1] P. Huber, M. Lindner and W. Winter, Comput. Phys. Commun. 167 (2005), 195 doi:10.1016/j.cpc.2005.01.003 [arXiv:hep-ph/0407333 [hep-ph]].
- [2] P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, Comput. Phys. Commun. 177 (2007), 432-438 doi:10.1016/j.cpc.2007.05.004 [arXiv:hep-ph/0701187 [hep-ph]].
- [3] A. V. Akindinov et al. Eur. Phys. J. C 79 (2019) no.9, 758 doi:10.1140/epjc/s10052-019-7259-5 [4] B. Abi *et al.* [DUNE], [arXiv:2002.03005 [hep-ex]].
- [5] I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, JHEP 09 (2020), 178 doi:10.1007/JHEP09(2020)178 [arXiv:2007.14792 [hep-ph]].